Adaboost集成学习 | Matlab实现基于CNN-LSTM-Adaboost集成学习时间序列预测(股票价格预测)

目录

    • 效果一览
    • 基本介绍
    • 模型设计
    • 程序设计
    • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Adaboost集成学习 | Matlab实现基于CNN-LSTM-Adaboost集成学习时间序列预测(股票价格预测)

模型设计

融合Adaboost的CNN-LSTM模型的时间序列预测,下面是一个基本的框架。

数据准备:
收集并整理用于时间序列预测的数据集。确保数据集包含时间序列的输入特征和对应的目标变量。
划分数据集为训练集和测试集,一般按照时间顺序划分。
单个模型训练:
使用CNN-LSTM模型对时间序列数据进行预测。
Adaboost集成:
将CNN-LSTM的预测结果作为特征输入到Adaboost算法中。
将预测结果作为Adaboost的训练样本标签,并为每个样本分配一个权重。
训练Adaboost模型,通过迭代选择最佳的基分类器,并更新样本权重。
模型预测:
对测试集中的时间序列数据,使用已训练的Adaboost模型进行预测,得到最终的时间序列预测结果。
模型评估:
使用测试集对集成模型进行评估,计算预测结果与真实值之间的误差指标,如均方根误差(RMSE)或平均绝对误差(MAE)。

程序设计

  • 完整程序订阅专栏Adaboost集成学习后获取。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc  

%% 导入数据
data =  readmatrix('Price.xlsx');
[h1,l1]=data_process(data,6);   %步长为6,采用前6个时刻预测第7个时刻
res = [h1,l1];
num_samples = size(res,1);   %样本个数

% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);



layers0 = [ ...
    % 输入特征
    sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
    % CNN特征提取
    convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
    batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
    reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
      % 池化层
    maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
    % 展开层
    sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复
    %平滑层
    flattenLayer('name','flatten')
    
    lstmLayer(25,'Outputmode','last','name','hidden1') 
    dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入




%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 100, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.01, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod',70, ...                   % 训练100次后开始调整学习率
    'LearnRateDropFactor',0.01, ...                    % 学习率调整因子
    'L2Regularization', 0.001, ...         % 正则化参数
    'ExecutionEnvironment', 'cpu',...                 % 训练环境
    'Verbose', 1, ...                                 % 关闭优化过程
    'Plots', 'none');                    % 画出曲线

%% Adaboost增强学习部分
%  权重初始化%% 
D = ones(1, M) / M;

%%  参数设置
K = 5;                       % 弱回归器个数


%%  弱回归器回归
for i = 1 : K
            i
    %%  创建模型
    clear net
    net = trainNetwork(trainD,targetD',lgraph0,options0);
    result1 = predict(net, trainD); 
    result2 =  predict(net, testD); 
    %  数据格式转换
    E_sim1 = double(result1);% cell2mat将cell元胞数组转换为普通数组
    E_sim2 = double(result2);

    %%  仿真预测
    t_sim1(i, :) = E_sim1';
    t_sim2(i, :) = E_sim2';

 

%%  数据反归一化
T_sim1 = mapminmax('reverse', T_sim1, ps_output);
T_sim2 = mapminmax('reverse', T_sim2, ps_output);
T_sim1 = double(T_sim1);
T_sim2 = double(T_sim2);



%%  计算各项误差参数  %% 
% 指标计算
disp('…………CNN-LSTM-Adaboost训练集误差指标…………')
[test_MAE1,test_MAPE1,test_MSE1,test_RMSE1,test_R2_1,test_RPD1] = calc_error(T_train,T_sim1);
fprintf('\n')
disp('…………CNN-LSTM-Adaboost测试集误差指标…………')
[test_MAE2,test_MAPE2,test_MSE2,test_RMSE2,test_R2_2,test_RPD2]  = calc_error(T_test,T_sim2);
fprintf('\n')

%%  训练集绘图 %% 
figure
plot(1:M,T_train,'r-','LineWidth',1,'MarkerSize',2)
hold on
plot(1:M,T_sim1,'b-','LineWidth',1,'MarkerSize',3)

legend('真实值','CNN-LSTM-Adaboost预测值')
xlabel('预测样本')
ylabel('预测结果')
string={'训练集预测结果对比';['(R^2 =' num2str(test_R2_1) ' RMSE= ' num2str(test_RMSE1) ' MSE= ' num2str(test_MSE1)  ')'];[ '(MAE= ' num2str(test_MAE1) ' MAPE= ' num2str(test_MAPE1) ' RPD= ' num2str(test_RPD1) ')' ]};
title(string)


%测试集误差图  %% 
figure
plot(T_test-T_sim2,'b-','LineWidth',0.1,'MarkerSize',2)
xlabel('测试集样本编号')
ylabel('预测误差')
title('测试集预测误差')
grid on;
legend('CNN-LSTM-Adaboost预测输出误差')


训练结束: 已完成最大轮数。
…………CNN-LSTM-Adaboost训练集误差指标…………
1.均方差(MSE):5.0615
2.根均方差(RMSE):2.2498
3.平均绝对误差(MAE):1.7773
4.平均相对百分误差(MAPE):3.0813%
5.R2:98.1767%
6.剩余预测残差RPD:7.4167

…………CNN-LSTM-Adaboost测试集误差指标…………
1.均方差(MSE):60.8207
2.根均方差(RMSE):7.7988
3.平均绝对误差(MAE):6.601
4.平均相对百分误差(MAPE):6.2778%
5.R2:46.9453%
6.剩余预测残差RPD:2.3064

参考资料

[1] https://hmlhml.blog.csdn.net/article/details/135536086?spm=1001.2014.3001.5502
[2] https://hmlhml.blog.csdn.net/article/details/137166860?spm=1001.2014.3001.5502
[3] https://hmlhml.blog.csdn.net/article/details/132372151

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/704318.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

渗透测试工具NMAP

nmap是一个网络连接端扫描软件,用来扫描网上电脑开放的网络连接端。确定哪些服务运行在哪些连接端,并且推断计算机运行哪个操作系统(这是亦称 fingerprinting)。它是网络管理员必用的软件之一,以及用以评估网络系统安全…

linux安装jdk + docker+dockercompose+aliyunACR

下载安装包 链接:https://pan.baidu.com/s/1AyFvPA5qwy4IxfZoTQohrQ 提取码:6666 安装jdk jdk-8u411-linux-x64.tar.gz 链接:https://pan.baidu.com/s/1BZ7J4L5PY-9nuQyxBMDGTA 提取码:6666 1、解压jdk tar -xvf jdk-8u411-li…

HTML静态网页成品作业(HTML+CSS+JS)—— 美食企业曹氏鸭脖介绍网页(4个页面)

🎉不定期分享源码,关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 🏷️本套采用HTMLCSS,使用Javacsript代码实现 图片轮播切换,共有4个页面。 二、…

SylixOS下UDP组播测试程序

SylixOS下UDP组播测试 测试效果截图如下: udp组播发送测试程序。 /********************************************************************************************************* ** ** 中国软件开源组织 ** ** …

即插即用!CVD:第一个生成具有相机控制的多视图一致视频方案!(斯坦福港中文)

论文链接:https://arxiv.org/abs/2405.17414 项目链接:https://collaborativevideodiffusion.github.io/ 最近对视频生成的研究取得了巨大进展,使得可以从文本提示或图像生成高质量的视频。在视频生成过程中添加控制是未来的重要目标&#x…

算法:模拟题目练习

目录 题目一:替换所有的问号 题目二:提莫攻击 题目三:N字形变换 题目四:外观数列 题目五:数青蛙 首先先解释一下模拟算法是什么,其实模拟算法就是题目让我们干什么我们就干什么,思路比较简…

【数据库设计】宠物商店管理系统

目录 🌊1 问题的提出 🌊2 需求分析 🌍2.1 系统目的 🌍2.2 用户需求 🌻2.2.1 我国宠物行业作为新兴市场,潜力巨大 🌻2.2.2 我国宠物产品消费规模逐年增大 🌻2.2.3 我国宠物主选…

YOLOv5改进 | Head | 将yolov5的检测头替换为ASFF_Detect

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 在目标检测中,为了解决尺度变化的问题,通常采用金字塔特征表示。然而,对于基于特征金字塔的单次检测器来…

凡尔码来访登记卡助力来访安全

来访登记制度是指为了加强对来访人员的管理和安全控制,确保组织内部秩序和安全的一项制度。通过来访登记制度,可以对来访人员的身份进行核实,了解来访目的,并采取相应的安全措施,为组织内部的工作和人员安全提供保障。…

Sass实战运用,如何利用好Sass

Sass(Syntactically Awesome Stylesheets)是一种CSS预处理器,它提供了许多强大的功能,如变量、嵌套规则、混合(Mixins)、函数等,使得CSS的编写更加高效、灵活和易于维护。以下是关于Sass实战运用…

Go基础编程 - 05 - 数组与切片

目录 1. 数组2. 切片2.1. slice 声明、初始化2.2. slice 操作2.3. append() 追加切片、扩容2.4. 字符串和切片 3. Copy4. Array、Slice 内存布局 上一篇:基本类型、常量和变量 1. 数组 数组是同一种类型固定长度的序列(有长度、类型构成)。…

Postgres 正在吞噬数据库世界

Postgres 正在吞噬数据库世界 作者:Ruohang Feng(Vonng)|微信| Medium | 2024-03-04 标签: PostgreSQL生态系统 PostgreSQL 不仅仅是一个简单的关系型数据库,它还是一个数据管理框架,具有席卷整个数据库领…

基于WPF技术的换热站智能监控系统04--实现左侧历史曲线

1、区域划分 左侧分5行,第一行信息标题,第二行历史曲线 2、安装livecharts图表控件 3、引入图表控件命名空间 4、使用控件 5、运行效果 走过路过不要错过,点赞关注收藏又圈粉,共同致富,为财务自由作出贡献

IP地址乱成一团?用Shell一键搞定!

在日常的运维工作中,我们经常需要对各种数据进行处理和分析,其中包括对IP地址的管理和排序。排序后的IP地址列表可以帮助我们更好地进行日志分析、网络流量监控和故障排除。 本文将模拟一个运维场景,展示如何对IP地址进行排序,并探…

Mongodb使用$pop删除数组中的元素

学习mongodb,体会mongodb的每一个使用细节,欢迎阅读威赞的文章。这是威赞发布的第67篇mongodb技术文章,欢迎浏览本专栏威赞发布的其他文章。如果您认为我的文章对您有帮助或者解决您的问题,欢迎在文章下面点个赞,或者关…

编译和连接

目录1. 翻译环境和运行环境2. 翻译环境:预编译编译汇编链接1. 翻译环境和运行环境 在ANSI C 的任何一种实现中,存在两个不同环境。 (1) 翻译环境,在这种环境中源代码被转换为可执行的机器指令(二进制指令)。 (2) 执行环境,它用于实际执行的代…

PostgreSQL 多表连接不同维度聚合统计查询

摘要:在本文中,你将学习到如何使用 PostgreSQL 完全外连接,从两个或多个表中聚合维度统计数据。 文章目录 一、常用的连接类型图示二、数据库表设计示例三、连接查询示例1. inner join 内连接(不能满足维度统计需求)2. full join 完全外连接(满足维度统计需求)一、常用的…

Golang免杀-分离式加载器(传参)AES加密

目录 enc.go 生成: dec.go --执行dec.go...--上线 cs生成个c语言的shellcode. enc.go go run .\enc.go shellcode 生成: --key为公钥. --code为AES加密后的数据, ----此脚本每次运行key和code都会变化. package mainimport ("bytes""crypto/aes"&…

java1.8运行arthas-boot.jar运行报错解决

报错内容 输入java -jar arthas-boot.jar,后报错。 [INFO] JAVA_HOME: D:\developing\jdk\jre1.8 [INFO] arthas-boot version: 3.7.2 [INFO] Can not find java process. Try to run jps command lists the instrumented Java HotSpot VMs on the target system.…

Spring Boot集成antlr实现词法和语法分析

1.什么是antlr? Antlr4 是一款强大的语法生成器工具,可用于读取、处理、执行和翻译结构化的文本或二进制文件。基本上是当前 Java 语言中使用最为广泛的语法生成器工具。Twitter搜索使用ANTLR进行语法分析,每天处理超过20亿次查询&#xff1…