基于STM32和人工智能的智能家居监控系统

目录

  1. 引言
  2. 环境准备
  3. 智能家居监控系统基础
  4. 代码实现:实现智能家居监控系统
    • 4.1 数据采集模块
    • 4.2 数据处理与分析
    • 4.3 控制系统
    • 4.4 用户界面与数据可视化
  5. 应用场景:智能家居环境监控与管理
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

随着智能家居技术的发展,智能家居监控系统在提升家居安全、舒适性和能源效率方面具有重要作用。通过人工智能算法对环境数据进行分析,可以实现更智能的家居环境管理。本文将详细介绍如何在STM32嵌入式系统中结合人工智能技术实现一个智能家居监控系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  • 开发板:STM32F407 Discovery Kit
  • 调试器:ST-LINK V2或板载调试器
  • 温湿度传感器:如DHT22
  • 空气质量传感器:如MQ-135
  • 摄像头模块:用于视频监控
  • 风扇与净化器:用于环境控制
  • 显示屏:如TFT LCD显示屏
  • 按键或旋钮:用于用户输入和设置
  • 电源:12V或24V电源适配器

软件准备

  • 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  • 调试工具:STM32 ST-LINK Utility或GDB
  • 库和中间件:STM32 HAL库、TensorFlow Lite
  • 人工智能模型:用于数据分析和预测

安装步骤

  1. 下载并安装 STM32CubeMX
  2. 下载并安装 STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序
  5. 下载并集成 TensorFlow Lite 库

3. 智能家居监控系统基础

控制系统架构

智能家居监控系统由以下部分组成:

  • 数据采集模块:用于采集环境数据(温湿度、空气质量、视频图像等)
  • 数据处理与分析:使用人工智能算法对采集的数据进行分析和预测
  • 控制系统:根据分析结果控制家居设备(风扇、净化器等)
  • 显示系统:用于显示环境参数和系统状态
  • 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过传感器采集家居环境的温湿度、空气质量和视频数据,并使用人工智能算法进行分析和预测,自动控制风扇、净化器等家居设备,实现智能化的家居环境管理。用户可以通过按键或旋钮进行设置,并通过显示屏查看当前状态和系统建议。

4. 代码实现:实现智能家居监控系统

4.1 数据采集模块

配置DHT22温湿度传感器
使用STM32CubeMX配置GPIO接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "dht22.h"

void DHT22_Init(void) {
    // 初始化DHT22传感器
}

void DHT22_Read_Data(float* temperature, float* humidity) {
    // 读取DHT22传感器的温度和湿度数据
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    DHT22_Init();

    float temperature, humidity;

    while (1) {
        DHT22_Read_Data(&temperature, &humidity);
        HAL_Delay(2000);
    }
}

配置MQ-135空气质量传感器
使用STM32CubeMX配置ADC接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"

ADC_HandleTypeDef hadc1;

void ADC_Init(void) {
    __HAL_RCC_ADC1_CLK_ENABLE();

    ADC_ChannelConfTypeDef sConfig = {0};

    hadc1.Instance = ADC1;
    hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
    hadc1.Init.Resolution = ADC_RESOLUTION_12B;
    hadc1.Init.ScanConvMode = DISABLE;
    hadc1.Init.ContinuousConvMode = ENABLE;
    hadc1.Init.DiscontinuousConvMode = DISABLE;
    hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
    hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
    hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
    hadc1.Init.NbrOfConversion = 1;
    hadc1.Init.DMAContinuousRequests = DISABLE;
    hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
    HAL_ADC_Init(&hadc1);

    sConfig.Channel = ADC_CHANNEL_0;
    sConfig.Rank = 1;
    sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
    HAL_ADC_ConfigChannel(&hadc1, &sConfig);
}

uint32_t Read_Air_Quality(void) {
    HAL_ADC_Start(&hadc1);
    HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);
    return HAL_ADC_GetValue(&hadc1);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    ADC_Init();

    uint32_t air_quality;

    while (1) {
        air_quality = Read_Air_Quality();
        HAL_Delay(1000);
    }
}

配置摄像头模块
使用STM32CubeMX配置SPI或I2C接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的SPI或I2C引脚,设置为相应的通信模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "camera.h"

void Camera_Init(void) {
    // 初始化摄像头模块
}

void Camera_Capture_Image(uint8_t* image_buffer) {
    // 捕获图像数据
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    Camera_Init();

    uint8_t image_buffer[IMAGE_SIZE];

    while (1) {
        Camera_Capture_Image(image_buffer);
        HAL_Delay(5000);  // 每5秒捕获一次图像
    }
}

4.2 数据处理与分析

集成TensorFlow Lite进行数据分析
使用STM32CubeMX配置必要的接口,确保嵌入式系统能够加载和运行TensorFlow Lite模型。

代码实现

#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#include "model_data.h"  // 人工智能模型数据

namespace {
    tflite::MicroErrorReporter micro_error_reporter;
    tflite::MicroInterpreter* interpreter = nullptr;
    TfLiteTensor* input = nullptr;
    TfLiteTensor* output = nullptr;
    constexpr int kTensorArenaSize = 2 * 1024;
    uint8_t tensor_arena[kTensorArenaSize];
}

void AI_Init(void) {
    tflite::InitializeTarget();

    static tflite::MicroMutableOpResolver<10> micro_op_resolver;
    micro_op_resolver.AddFullyConnected();
    micro_op_resolver.AddSoftmax();

    const tflite::Model* model = tflite::GetModel(model_data);
    if (model->version() != TFLITE_SCHEMA_VERSION) {
        TF_LITE_REPORT_ERROR(&micro_error_reporter,
                             "Model provided is schema version %d not equal "
                             "to supported version %d.",
                             model->version(), TFLITE_SCHEMA_VERSION);
        return;
    }

    static tflite::MicroInterpreter static_interpreter(
        model, micro_op_resolver, tensor_arena, kTensorArenaSize,
        &micro_error_reporter);
    interpreter = &static_interpreter;

    interpreter->AllocateTensors();

    input = interpreter->input(0);
    output = interpreter->output(0);
}

void AI_Run_Inference(float* input_data, float* output_data) {
    // 拷贝输入数据到模型输入张量
    for (int i = 0; i < input->dims->data[0]; ++i) {
        input->data.f[i] = input_data[i];
    }

    // 运行模型推理
    if (interpreter->Invoke() != kTfLiteOk) {
        TF_LITE_REPORT_ERROR(&micro_error_reporter, "Invoke failed.");
        return;
    }

    // 拷贝输出数据
    for (int i = 0; i < output->dims->data[0]; ++i) {
        output_data[i] = output->data.f[i];
    }
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    AI_Init();

    float input_data[INPUT_SIZE];
    float output_data[OUTPUT_SIZE];

    while (1) {
        // 获取传感器数据,填充 input_data 数组

        AI_Run_Inference(input_data, output_data);

        // 根据模型输出数据执行相应的操作
        HAL_Delay(1000);
    }
}

4.3 控制系统

配置GPIO控制风扇与净化器
使用STM32CubeMX配置GPIO:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO引脚,设置为输出模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"

#define FAN_PIN GPIO_PIN_0
#define PURIFIER_PIN GPIO_PIN_1
#define GPIO_PORT GPIOA

void GPIO_Init(void) {
    __HAL_RCC_GPIOA_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = FAN_PIN | PURIFIER_PIN;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}

void Control_Fan(uint8_t state) {
    if (state) {
        HAL_GPIO_WritePin(GPIO_PORT, FAN_PIN, GPIO_PIN_SET);  // 打开风扇
    } else {
        HAL_GPIO_WritePin(GPIO_PORT, FAN_PIN, GPIO_PIN_RESET);  // 关闭风扇
    }
}

void Control_Purifier(uint8_t state) {
    if (state) {
        HAL_GPIO_WritePin(GPIO_PORT, PURIFIER_PIN, GPIO_PIN_SET);  // 打开净化器
    } else {
        HAL_GPIO_WritePin(GPIO_PORT, PURIFIER_PIN, GPIO_PIN_RESET);  // 关闭净化器
    }
}

int main(void) {
    HAL_Init();
    SystemClock_Config();

4.4 用户界面与数据可视化

配置TFT LCD显示屏
使用STM32CubeMX配置SPI接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的SPI引脚,设置为SPI模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "spi.h"
#include "lcd_tft.h"

void Display_Init(void) {
    LCD_TFT_Init();
}

void Display_Sensor_Data(float temperature, float humidity, uint32_t air_quality) {
    char buffer[32];
    sprintf(buffer, "Temp: %.2f C", temperature);
    LCD_TFT_Print(buffer);
    sprintf(buffer, "Humidity: %.2f %%", humidity);
    LCD_TFT_Print(buffer);
    sprintf(buffer, "Air Quality: %lu", air_quality);
    LCD_TFT_Print(buffer);
}

void Display_AI_Result(float* output_data) {
    char buffer[32];
    sprintf(buffer, "AI Result: %.2f", output_data[0]);  // 假设输出结果是一个数值
    LCD_TFT_Print(buffer);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();
    DHT22_Init();
    ADC_Init();
    AI_Init();
    Display_Init();

    float temperature, humidity;
    uint32_t air_quality;
    float input_data[INPUT_SIZE];
    float output_data[OUTPUT_SIZE];

    while (1) {
        // 读取传感器数据
        DHT22_Read_Data(&temperature, &humidity);
        air_quality = Read_Air_Quality();

        // 填充 input_data 数组
        input_data[0] = temperature;
        input_data[1] = humidity;
        input_data[2] = air_quality;

        // 运行AI推理
        AI_Run_Inference(input_data, output_data);

        // 显示传感器数据和AI结果
        Display_Sensor_Data(temperature, humidity, air_quality);
        Display_AI_Result(output_data);

        // 根据AI结果控制风扇和净化器
        Control_Fan(output_data[0] > 0.5);  // 简单示例,实际控制逻辑可能更复杂
        Control_Purifier(output_data[1] > 0.5);

        HAL_Delay(1000);
    }
}

5. 应用场景:智能家居环境监控与管理

室内空气质量管理

智能家居监控系统可以应用于室内空气质量管理,通过实时监控和控制空气质量,确保居住环境的健康与舒适。

家庭安全与安防

通过集成摄像头和人工智能算法,系统可以实时监控家庭环境,识别异常行为或入侵,提供安全预警和记录功能。

智能节能

通过智能控制家电设备,实现节能管理,减少能源消耗,提高能源利用效率。

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

 

6. 问题解决方案与优化

常见问题及解决方案

  1. 传感器数据不准确:确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。
  2. 设备响应延迟:优化控制逻辑和硬件配置,减少设备响应时间,提高系统反应速度。
  3. 显示屏显示异常:检查SPI通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

优化建议

  1. 数据集成与分析:集成更多类型的传感器数据,使用大数据分析和机器学习技术进行空气质量预测和趋势分析。
  2. 用户交互优化:改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。
  3. 智能化控制提升:增加智能决策支持系统,根据历史数据和实时数据自动调整控制策略,实现更高效的环境管理。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中结合人工智能技术实现智能家居监控系统,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/704121.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Chrome/Edge浏览器视频画中画可拉动进度条插件

目录 前言 一、Separate Window 忽略插件安装&#xff0c;直接使用 注意事项 插件缺点 1 .无置顶功能 2.保留原网页&#xff0c;但会刷新原网页 3.窗口不够美观 二、弹幕画中画播放器 三、失败的尝试 三、Potplayer播放器 总结 前言 平时看一些视频的时候&#xff…

java实现文件的压缩及解压

一、起因 开发中需要实现文件的压缩及解压功能&#xff0c;以满足某些特定场景的下的需要&#xff0c;在此说下具体实现。 二、实现 1.定义一个工具类ZipUtils,实现文件的压缩及解压&#xff0c;代码如下&#xff1a; import java.io.*; import java.nio.charset.Charset; impo…

动手学操作系统(六、获取物理内存容量)

动手学操作系统&#xff08;六、获取物理内存容量&#xff09; 在上一节中&#xff0c;我们介绍了保护模式和实模式的区别&#xff0c;保护模式的最大特点是“大”&#xff0c;“大”是指寻址空间大&#xff0c;在进入保护模式之后&#xff0c;我们还将要接触虚拟内存、内存管…

迅狐跨境商城系统|全平台兼容|前端采用uni-app跨端框架,后端采用ThinkPHP5框架

高效实现全平台兼容的迅狐跨境商城系统 迅狐跨境商城系统是一款专为跨境电商企业设计的全平台兼容系统。其前端采用uni-app跨端框架&#xff0c;后端采用ThinkPHP5框架&#xff0c;旨在实现高效的开发和运营管理。 1. 全平台兼容的前端设计 迅狐跨境商城系统的前端采用uni-a…

C# WinForm —— 34 ToolStrip 工具栏 介绍

1. 简介 工具栏 ToolStrip&#xff0c;一般紧贴在菜单栏下面 2. 属性 属性解释(Name)控件ID&#xff0c;在代码里引用的时候会用到Enabled控件是否启用Dock定义要绑定到容器的控件边框&#xff0c;默认是topAnchor定义某个控件绑定到的容器的边缘。当控件锚定到某个边缘时&a…

基于MCGS的双容水箱液位控制系统设计【MCGS+MATLAB+研华工控机】

摘 要 液位控制技术在众多工业领域中扮演着至关重要的角色。无论是化工、制药、食品加工还是水处理行业&#xff0c;对液位进行精确控制都是保证生产流程稳定、产品质量可靠的关键环节。因此基于实验平台设计了液位自动控制系统。首先&#xff0c;根据实际液位的控制需求&…

NHANES数据库及应用

NHANES数据库使用 NHANES - National Health and Nutrition Examination Survey Homepage (cdc.gov) 保姆级NHANES数据库使用教程 - 哔哩哔哩 (bilibili.com) 该数据库所涉及的参与者的死亡状况 &#xff1a;Data Access - National Death Index (cdc.gov) TyG对CVD的影响研…

简单的基于Transformer的滚动轴承故障诊断(Pytorch)

递归神经网络在很长一段时间内是序列转换任务的主导模型&#xff0c;其固有的序列本质阻碍了并行计算。因此&#xff0c;在2017年&#xff0c;谷歌的研究人员提出了一种新的用于序列转换任务的模型架构Transformer&#xff0c;它完全基于注意力机制建立输入与输出之间的全局依赖…

【JAVA】javadoc,如何生成标准的JAVA API文档

目录 1.什么是JAVA DOC 2.标签 3.命令 1.什么是JAVA DOC 当我们写完JAVA代码&#xff0c;别人要调用我们的代码的时候要是没有API文档是很痛苦的&#xff0c;只能跟进源码去一个个的看&#xff0c;一个个方法的猜&#xff0c;并且JAVA本来就不是一个重复造轮子的游戏&#…

javaWeb项目-ssm+vue网上租车系统功能介绍

本项目源码&#xff1a;java-基于ssmvue的网上租车系统源码说明文档资料资源-CSDN文库 项目关键技术 开发工具&#xff1a;IDEA 、Eclipse 编程语言: Java 数据库: MySQL5.7 框架&#xff1a;ssm、Springboot 前端&#xff1a;Vue、ElementUI 关键技术&#xff1a;springboot、…

Python基础教程(十五):面向对象编程

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; &#x1f49d;&#x1f49…

Diffusers代码学习-SDXL

Stable Diffusion XL&#xff08;SDXL&#xff09;是一个强大的文本到图像生成模型&#xff0c;它以三种关键方式迭代以前的Stable Differsion模型&#xff1a; 1. UNet大3倍&#xff0c;SDXL将第二个文本编码器&#xff08;OpenCLIP-ViT-bigG/14&#xff09;与原始文本编码器…

Kubernetes 基础架构最佳实践:从架构设计到平台自动化

本文探讨了如何将DigitalOcean Kubernetes (DOKS)应用于生产环境&#xff0c;并提供实现生产准备&#xff08;production readiness&#xff09;的指导。 规划您的基础架构 Kubernetes 基础架构的规划至关重要&#xff0c;因为它为稳定且可扩展的应用部署平台奠定了基础。通过适…

Coze+Discord:打造你的免费AI助手(教您如何免费使用GPT-4o/Gemini等最新最强的大模型/Discord如何正确连接Coze)

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 文章内容 📒📝 准备Discord📝 准备Coze🔌 连接💡 测试效果⚓️ 相关链接 ⚓️📖 介绍 📖 你是否想免费使用GPT-4o/Gemini等最新最强的大模型,但又不想花费高昂的费用?本文将教你如何通过Coze搭建Bot,并将其转发…

计算机网络(2) 网络层:IP服务模型

一.Internet Protocol在TCP/IP四层模型中的作用 第三层网络层负责数据包从哪里来到哪里去的问题。传输层的数据段提交给网络层后&#xff0c;网络层负责添加IP段&#xff0c;包含数据包源地址与目的地址。将添加IP段的数据包交由数据链路层添加链路头形成最终在各节点传输中所需…

YASKAWA机器人HW1171921-B电缆维修

安川机器人作为现代工业自动化的重要设备&#xff0c;其稳定运行对于生产线的连续性和效率至关重要。然而&#xff0c;随着使用时间的增长&#xff0c;可能会出现各种YASKAWA机器人本体线缆故障&#xff0c;如断线、短路、接触不良等。 一、安川工业机器人电缆维修前的准备 在进…

Java | Leetcode Java题解之第147题对链表进行插入排序

题目&#xff1a; 题解&#xff1a; class Solution {public ListNode insertionSortList(ListNode head) {if (head null) {return head;}ListNode dummyHead new ListNode(0);dummyHead.next head;ListNode lastSorted head, curr head.next;while (curr ! null) {if (…

糖尿病患者血糖控制困难,4个辅助降糖方法分享。

对于糖尿病患者来讲&#xff0c;血糖控制极为困难&#xff0c;稍不留意就会致使忽高忽低的情况出现&#xff0c;今天我来教你 4 个办法来辅助降糖。 第一&#xff0c;在饮食上可多进食全谷类食物&#xff0c;中医认为谷类食物是脾胃的主食。经常吃这类食物不但能够给脾胃提供充…

流媒体传输协议HTTP-FLV、WebSocket-FLV、HTTP-TS 和 WebSocket-WS的详细介绍、应用场景及对比

一、前言 HTTP-FLV、WS-FLV、HTTP-TS 和 WS-TS 是针对 FLV 和 TS 格式视频流的不同传输方式。它们通过不同的协议实现视频流的传输&#xff0c;以满足不同的应用场景和需求。接下来我们对这些流媒体传输协议进行剖析。 二、传输协议 1、HTTP-FLV 介绍&#xff1a;基于 HTTP…

word怎么单页横向设置(页码不连续版)

打开word&#xff0c;将光标放在第一页的最后位置。 然后点击布局下的分隔符&#xff0c;选择下一页。 将光标放在第二页的开头&#xff0c;点击布局下的纸张方向&#xff0c;选择横向即可。 效果展示。 PS&#xff1a;如果那一页夹在两页中间&#xff0c;那么在…