LlaMA 3 系列博客
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (一)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (二)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (五)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (六)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (七)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (八)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (九)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十)
构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(一)
构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(二)
构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(三)
构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(四)
构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(五)
你好 GPT-4o!
大模型标记器之Tokenizer可视化(GPT-4o)
大模型标记器 Tokenizer之Byte Pair Encoding (BPE) 算法详解与示例
大模型标记器 Tokenizer之Byte Pair Encoding (BPE)源码分析
大模型之自注意力机制Self-Attention(一)
大模型之自注意力机制Self-Attention(二)
大模型之自注意力机制Self-Attention(三)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十一)
Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (一)
Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (二)
Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (三)
Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (四)
Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (五)
Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(一)
Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(二)
Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(三)
大模型之深入理解Transformer位置编码(Positional Embedding)
大模型之深入理解Transformer Layer Normalization(一)
大模型之深入理解Transformer Layer Normalization(二)
大模型之深入理解Transformer Layer Normalization(三)
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(一)初学者的起点
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(二)矩阵操作的演练
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(三)初始化一个嵌入层
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(四)预先计算 RoPE 频率
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(五)预先计算因果掩码
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(六)首次归一化:均方根归一化(RMSNorm)
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(七) 初始化多查询注意力
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(八)旋转位置嵌入
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(九) 计算自注意力
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十) 残差连接及SwiGLU FFN
大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十一)输出概率分布 及损失函数计算
大模型之使用PyTorch编写Meta的Llama 3实际功能代码(一)加载简化分词器及设置参数
大模型之使用PyTorch编写Meta的Llama 3实际功能代码(二)RoPE 及注意力机制
大模型之使用PyTorch编写Meta的Llama 3实际功能代码(三) FeedForward 及 Residual Layers
大模型之使用PyTorch编写Meta的Llama 3实际功能代码(四) 构建 Llama3 类模型本身
大模型之使用PyTorch编写Meta的Llama 3实际功能代码(五)训练并测试你自己的 minLlama3
大模型之使用PyTorch编写Meta的Llama 3实际功能代码(六)加载已经训练好的miniLlama3模型
Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (四)
Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (五)
Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (六)
Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (七)
Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (八)
Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(一)
Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(二)
Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(三)
Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(四)
Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(一)Code Shield简介
Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(二)防止 LLM 生成不安全代码
Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(三)Code Shield代码示例
Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介
Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(二) LLaMA-Factory训练方法及数据集
大模型之Ollama:在本地机器上释放大型语言模型的强大功能
Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(三)通过Web UI微调
Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(四)通过命令方式微调
Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(五) 基于已训练好的模型进行推理
Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(六)Llama 3 已训练的大模型合并LoRA权重参数
Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(七) 使用 LoRA 微调 LLM 的实用技巧
Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(八) 使用 LoRA 微调 LLM 的实用技巧
Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(九) 使用 LoRA 微调常见问题答疑
Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(十) 使用 LoRA 微调常见问题答疑
Llama模型家族训练奖励模型Reward Model技术及代码实战(一)简介
Llama模型家族训练奖励模型Reward Model技术及代码实战(二)从用户反馈构建比较数据集
Llama模型家族训练奖励模型Reward Model技术及代码实战(三) 使用 TRL 训练奖励模型
Llama模型家族之RLAIF 基于 AI 反馈的强化学习(一)RLHF简介
Llama模型家族之RLAIF 基于 AI 反馈的强化学习(二)RLHF 与RAIF比较
Llama模型家族之RLAIF 基于 AI 反馈的强化学习(三) RLAIF 的工作原理
Llama模型家族之RLAIF 基于 AI 反馈的强化学习(四)RLAIF 优势
Llama模型家族之RLAIF 基于 AI 反馈的强化学习(五)RLAIF 挑战
Llama模型家族之RLAIF 基于 AI 反馈的强化学习(六) RLAIF 代码实战
Llama模型家族之RLAIF 基于 AI 反馈的强化学习(七) RLAIF 代码实战
Llama模型家族之RLAIF 基于 AI 反馈的强化学习(八) RLAIF 代码实战
Llama模型家族之RLAIF 基于 AI 反馈的强化学习(九) RLAIF 代码实战
Llama模型家族之RLAIF 基于 AI 反馈的强化学习(十) RLAIF 代码实战
Llama模型家族之拒绝抽样(Rejection Sampling)(一)
Llama模型家族之拒绝抽样(Rejection Sampling)(二)均匀分布简介
Llama模型家族之拒绝抽样(Rejection Sampling)(三)确定缩放常数以优化拒绝抽样方法
Llama模型家族之拒绝抽样(Rejection Sampling)(四) 蒙特卡罗方法在拒绝抽样中的应用:评估线与样本接受标准
Llama模型家族之拒绝抽样(Rejection Sampling)(五) 蒙特卡罗算法在拒绝抽样中:均匀分布与样本接受标准
Llama模型家族之拒绝抽样(Rejection Sampling)(六) 拒绝抽样中的蒙特卡罗算法:重复过程与接受标准
Llama模型家族之拒绝抽样(Rejection Sampling)(七) 优化拒绝抽样:选择高斯分布以减少样本拒绝
Llama模型家族之拒绝抽样(Rejection Sampling)(八) 代码实现
Llama模型家族之拒绝抽样(Rejection Sampling)(九) 强化学习之Rejection Sampling
Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(一)ReFT简介
Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(二) PyReFT简介
Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(三)为 ReFT 微调准备模型及数据集
Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(四) ReFT 微调训练及模型推理
Llama模型家族之Stanford NLP ReFT源代码探索 (一)数据预干预
Llama模型家族之Stanford NLP ReFT源代码探索 (二)interventions.py 代码解析
Llama模型家族之Stanford NLP ReFT源代码探索 (三)reft_model.py代码解析
Llama模型家族之Stanford NLP ReFT源代码探索 (四)Pyvene学习
Llama模型家族之Stanford NLP ReFT源代码探索 (五)代码库简介
Llama模型家族之Stanford NLP ReFT源代码探索 (六)pyvene 基本干预示例-1
Llama模型家族之Stanford NLP ReFT源代码探索 (七)pyvene 基本干预示例-2
Generative AI原理本质、技术内核及工程实践之基于Vertex AI的大模型 (一)Vertex AI 简介
Generative AI原理本质、技术内核及工程实践之基于Vertex AI的大模型 (二)Generative AI on Vertex AI 概览
提示
生成式 AI 工作流通常从提示开始。提示是发送到生成式 AI 模型以引出回答的请求。根据模型的不同,提示可以包含文本、图片、视频、音频、文档和其他模态,甚至包含多模态(多模态提示)。
创建提示以从模型获取所需回答的做法称为提示设计。 虽然提示设计是一个试验和试错过程,但您可以利用提示设计原则和策略来智能调整模型,使其行为符合预期。Vertex AI Studio 提供提示管理工具,可帮助您管理提示。
基础模型
提示会发送到生成式 AI 模型以生成回答。 Vertex AI 具有可通过托管 API 访问的各种生成式 AI 基础模型,包括:
- Gemini API:高级推理、多轮聊天、代码生成和多模态提示。
- Imagen API:图片生成、图片修改和视觉标注。
- MedLM:医学问题回答和摘要。(非公开正式版)
这些模型的大小、模态和费用各有不同。您可以在 Model Garden 中探索 Google 模型,以及 Google 合作伙伴提供的开放模型和其他模型。
模型自定义
您可以自定义 Google 基础模型的默认行为,以便在不使用复杂提示的情况下始终生成所需的结果。此自定义过程称为模型调优。模型调优可让您简化提示,从而帮助您降低请求的费用并缩短延迟时间。
Vertex AI 还提供模型评估工具,可帮助您评估经过调优的模型的性能。在经过调优的模型可用于生产后,您可以像在标准 MLOps 工作流中一样将其部署到端点并监控性能。
请求增强
增强
Vertex AI 提供多种请求增强方法,可让模型访问外部 API 和实时信息。
- 建立依据:将模型回答连接到真实来源(例如您自己的数据或网页搜索),有助于减少幻觉。
- RAG:将模型连接到外部知识源(例如文档和数据库),以生成更准确的且信息丰富的回答。
- 函数调用:让模型与外部 API 交互,以获取实时信息并执行实际任务。
引用检查
生成响应后,Vertex AI 会检查响应中是否需要包含引用。如果响应中有大量文本来自特定来源,则该来源会添加到响应中的引用元数据。
Responsible AI 和安全
Responsible AI 和安全
在返回提示和响应之前要经过的一层检查是安全过滤器。Vertex AI 会检查提示和回答,以了解提示或回答属于安全类别的程度。如果一个或多个类别超过阈值,则响应会被阻止,Vertex AI 将返回后备响应。
响应
如果提示和响应通过了安全过滤器检查,则系统会返回响应。通常,系统会一次性返回所有回答。但是,您也可以通过启用流式传输来逐步接收生成的响应。
生成式 AI API 和模型
Vertex AI 中提供的生成式 AI 模型(也称为基础模型)按其设计生成的内容类型进行分类。这些内容包括文本、聊天、图片、代码、视频、多模态数据和嵌入。每个模型都通过特定于您的 Google Cloud 项目的发布者端点公开,因此您无需部署基础模型,除非您需要针对特定应用场景进行调优。
Gemini API 产品
Vertex AI Gemini API 包含由 Google DeepMind 开发的 Gemini 模型的发布商端点。
- Gemini 1.5 Pro(预览版)支持多模态提示。您可以在提示请求中添加文本、图片、音频、视频和 PDF 文件,并获取文本或代码回答。与 Gemini 1.0 Pro Vision 相比,Gemini 1.5 Pro(预览版)可以处理更大的图片集合、更大的文本文档和更长的视频。
- Gemini 1.0 Pro 旨在处理自然语言任务、多轮文本和代码聊天以及代码生成。
- Gemini 1.0 Pro Vision 支持多模态提示。您可以在提示请求中包含文本、图片、视频和 PDF,并获取文本或代码回答。
下表显示了 Gemini 模型之间的一些差异,可帮助您选择最适合自己的模型:
PaLM API 产品
Vertex AI PaLM API 包含发布商端点以用于 Google 的 Pathways 语言模型 2 (PaLM 2),该模型是大语言模型 (LLM),可生成文本和代码来回复自然环境语言提示。
- 用于文本的 PaLM API 针对分类、汇总和实体提取等语言任务进行了微调。
- 用于聊天的 PaLM API 针对多轮聊天进行了微调,模型可以在聊天中跟踪之前的消息,并将其用作生成新回复的上下文。
其他生成式 AI 产品
-
文本嵌入为输入文本生成向量嵌入。您可以将嵌入用于语义搜索、推荐、分类和离群值检测等任务。
-
多模态嵌入根据图片和文本输入生成向量嵌入。这些嵌入稍后可用于其他后续任务,例如图片分类或内容推荐。
-
Imagen 是 文本转图片基础模型,可让您大规模生成和自定义工作室级图片。
-
合作伙伴模型是由 Google 合作伙伴公司开发的一系列精选生成式 AI 模型。这些生成式 AI 模型以托管式 API 的形式提供。例如,Anthropic 以 Vertex AI 上的服务形式提供其 Claude 模型。
-
可以在 Vertex AI 或其他平台上部署开放模型(如 Llama)。
-
MedLM 是面向医疗保健行业微调的一系列基础模型。
认证和安全控制
Vertex AI 支持 CMEK、VPC Service Controls、数据驻留和 Access Transparency。生成式 AI 功能有一些限制。如需了解详情,请参阅生成式 AI 安全控制。
大模型技术分享
《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座
模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战
Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战
1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。
解码Sora架构、技术及应用
一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。
二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。
GPT 自回归语言模型架构、数学原理及内幕-简介
GPT 自回归语言模型架构、数学原理及内幕-简介
基于 Transformer 的 Rasa Internals 解密之 Retrieval Model 剖析-简介
基于 Transformer 的 Rasa Internals 解密之 Retrieval Model 剖析-简介
Transformer语言模型架构、数学原理及内幕机制-简介
Transformer语言模型架构、数学原理及内幕机制-简介