Generative AI原理本质、技术内核及工程实践之基于Vertex AI的大模型 (二)Generative AI on Vertex AI 概览

LlaMA 3 系列博客

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (一)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (二)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (五)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (六)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (七)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (八)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (九)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(一)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(二)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(三)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(四)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(五)

你好 GPT-4o!

大模型标记器之Tokenizer可视化(GPT-4o)

大模型标记器 Tokenizer之Byte Pair Encoding (BPE) 算法详解与示例

大模型标记器 Tokenizer之Byte Pair Encoding (BPE)源码分析

大模型之自注意力机制Self-Attention(一)

大模型之自注意力机制Self-Attention(二)

大模型之自注意力机制Self-Attention(三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(三)

大模型之深入理解Transformer位置编码(Positional Embedding)

大模型之深入理解Transformer Layer Normalization(一)

大模型之深入理解Transformer Layer Normalization(二)

大模型之深入理解Transformer Layer Normalization(三)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(一)初学者的起点

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(二)矩阵操作的演练

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(三)初始化一个嵌入层

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(四)预先计算 RoPE 频率

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(五)预先计算因果掩码

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(六)首次归一化:均方根归一化(RMSNorm)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(七) 初始化多查询注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(八)旋转位置嵌入

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(九) 计算自注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十) 残差连接及SwiGLU FFN

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十一)输出概率分布 及损失函数计算

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(一)加载简化分词器及设置参数

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(二)RoPE 及注意力机制

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(三) FeedForward 及 Residual Layers

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(四) 构建 Llama3 类模型本身

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(五)训练并测试你自己的 minLlama3

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(六)加载已经训练好的miniLlama3模型

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (六)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (七)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (八)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(四)

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(一)Code Shield简介

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(二)防止 LLM 生成不安全代码

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(三)Code Shield代码示例

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(二) LLaMA-Factory训练方法及数据集

大模型之Ollama:在本地机器上释放大型语言模型的强大功能

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(三)通过Web UI微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(四)通过命令方式微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(五) 基于已训练好的模型进行推理

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(六)Llama 3 已训练的大模型合并LoRA权重参数

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(七) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(八) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(九) 使用 LoRA 微调常见问题答疑

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(十) 使用 LoRA 微调常见问题答疑

Llama模型家族训练奖励模型Reward Model技术及代码实战(一)简介

Llama模型家族训练奖励模型Reward Model技术及代码实战(二)从用户反馈构建比较数据集

Llama模型家族训练奖励模型Reward Model技术及代码实战(三) 使用 TRL 训练奖励模型

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(一)RLHF简介

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(二)RLHF 与RAIF比较

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(三) RLAIF 的工作原理

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(四)RLAIF 优势

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(五)RLAIF 挑战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(六) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(七) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(八) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(九) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(十) RLAIF 代码实战

Llama模型家族之拒绝抽样(Rejection Sampling)(一)

Llama模型家族之拒绝抽样(Rejection Sampling)(二)均匀分布简介

Llama模型家族之拒绝抽样(Rejection Sampling)(三)确定缩放常数以优化拒绝抽样方法

Llama模型家族之拒绝抽样(Rejection Sampling)(四) 蒙特卡罗方法在拒绝抽样中的应用:评估线与样本接受标准

Llama模型家族之拒绝抽样(Rejection Sampling)(五) 蒙特卡罗算法在拒绝抽样中:均匀分布与样本接受标准

Llama模型家族之拒绝抽样(Rejection Sampling)(六) 拒绝抽样中的蒙特卡罗算法:重复过程与接受标准

Llama模型家族之拒绝抽样(Rejection Sampling)(七) 优化拒绝抽样:选择高斯分布以减少样本拒绝

Llama模型家族之拒绝抽样(Rejection Sampling)(八) 代码实现

Llama模型家族之拒绝抽样(Rejection Sampling)(九) 强化学习之Rejection Sampling

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(一)ReFT简介

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(二) PyReFT简介

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(三)为 ReFT 微调准备模型及数据集

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(四) ReFT 微调训练及模型推理

Llama模型家族之Stanford NLP ReFT源代码探索 (一)数据预干预

Llama模型家族之Stanford NLP ReFT源代码探索 (二)interventions.py 代码解析

Llama模型家族之Stanford NLP ReFT源代码探索 (三)reft_model.py代码解析

Llama模型家族之Stanford NLP ReFT源代码探索 (四)Pyvene学习

Llama模型家族之Stanford NLP ReFT源代码探索 (五)代码库简介

Llama模型家族之Stanford NLP ReFT源代码探索 (六)pyvene 基本干预示例-1

Llama模型家族之Stanford NLP ReFT源代码探索 (七)pyvene 基本干预示例-2

Generative AI原理本质、技术内核及工程实践之基于Vertex AI的大模型 (一)Vertex AI 简介
在这里插入图片描述

Generative AI原理本质、技术内核及工程实践之基于Vertex AI的大模型 (二)Generative AI on Vertex AI 概览

在这里插入图片描述

提示

生成式 AI 工作流通常从提示开始。提示是发送到生成式 AI 模型以引出回答的请求。根据模型的不同,提示可以包含文本、图片、视频、音频、文档和其他模态,甚至包含多模态(多模态提示)。

创建提示以从模型获取所需回答的做法称为提示设计。 虽然提示设计是一个试验和试错过程,但您可以利用提示设计原则和策略来智能调整模型,使其行为符合预期。Vertex AI Studio 提供提示管理工具,可帮助您管理提示。

基础模型

提示会发送到生成式 AI 模型以生成回答。 Vertex AI 具有可通过托管 API 访问的各种生成式 AI 基础模型,包括:

  • Gemini API:高级推理、多轮聊天、代码生成和多模态提示。
  • Imagen API:图片生成、图片修改和视觉标注。
  • MedLM:医学问题回答和摘要。(非公开正式版)
    这些模型的大小、模态和费用各有不同。您可以在 Model Garden 中探索 Google 模型,以及 Google 合作伙伴提供的开放模型和其他模型。

模型自定义

您可以自定义 Google 基础模型的默认行为,以便在不使用复杂提示的情况下始终生成所需的结果。此自定义过程称为模型调优。模型调优可让您简化提示,从而帮助您降低请求的费用并缩短延迟时间。

Vertex AI 还提供模型评估工具,可帮助您评估经过调优的模型的性能。在经过调优的模型可用于生产后,您可以像在标准 MLOps 工作流中一样将其部署到端点并监控性能。

请求增强

增强
Vertex AI 提供多种请求增强方法,可让模型访问外部 API 和实时信息。

  • 建立依据:将模型回答连接到真实来源(例如您自己的数据或网页搜索),有助于减少幻觉。
  • RAG:将模型连接到外部知识源(例如文档和数据库),以生成更准确的且信息丰富的回答。
  • 函数调用:让模型与外部 API 交互,以获取实时信息并执行实际任务。

引用检查

生成响应后,Vertex AI 会检查响应中是否需要包含引用。如果响应中有大量文本来自特定来源,则该来源会添加到响应中的引用元数据。

Responsible AI 和安全

Responsible AI 和安全
在返回提示和响应之前要经过的一层检查是安全过滤器。Vertex AI 会检查提示和回答,以了解提示或回答属于安全类别的程度。如果一个或多个类别超过阈值,则响应会被阻止,Vertex AI 将返回后备响应。

响应

如果提示和响应通过了安全过滤器检查,则系统会返回响应。通常,系统会一次性返回所有回答。但是,您也可以通过启用流式传输来逐步接收生成的响应。

生成式 AI API 和模型

Vertex AI 中提供的生成式 AI 模型(也称为基础模型)按其设计生成的内容类型进行分类。这些内容包括文本、聊天、图片、代码、视频、多模态数据和嵌入。每个模型都通过特定于您的 Google Cloud 项目的发布者端点公开,因此您无需部署基础模型,除非您需要针对特定应用场景进行调优。

Gemini API 产品

Vertex AI Gemini API 包含由 Google DeepMind 开发的 Gemini 模型的发布商端点。

  • Gemini 1.5 Pro(预览版)支持多模态提示。您可以在提示请求中添加文本、图片、音频、视频和 PDF 文件,并获取文本或代码回答。与 Gemini 1.0 Pro Vision 相比,Gemini 1.5 Pro(预览版)可以处理更大的图片集合、更大的文本文档和更长的视频。
  • Gemini 1.0 Pro 旨在处理自然语言任务、多轮文本和代码聊天以及代码生成。
  • Gemini 1.0 Pro Vision 支持多模态提示。您可以在提示请求中包含文本、图片、视频和 PDF,并获取文本或代码回答。

下表显示了 Gemini 模型之间的一些差异,可帮助您选择最适合自己的模型:
在这里插入图片描述

PaLM API 产品

Vertex AI PaLM API 包含发布商端点以用于 Google 的 Pathways 语言模型 2 (PaLM 2),该模型是大语言模型 (LLM),可生成文本和代码来回复自然环境语言提示。

  • 用于文本的 PaLM API 针对分类、汇总和实体提取等语言任务进行了微调。
  • 用于聊天的 PaLM API 针对多轮聊天进行了微调,模型可以在聊天中跟踪之前的消息,并将其用作生成新回复的上下文。

其他生成式 AI 产品

  • 文本嵌入为输入文本生成向量嵌入。您可以将嵌入用于语义搜索、推荐、分类和离群值检测等任务。

  • 多模态嵌入根据图片和文本输入生成向量嵌入。这些嵌入稍后可用于其他后续任务,例如图片分类或内容推荐。

  • Imagen 是 文本转图片基础模型,可让您大规模生成和自定义工作室级图片。

  • 合作伙伴模型是由 Google 合作伙伴公司开发的一系列精选生成式 AI 模型。这些生成式 AI 模型以托管式 API 的形式提供。例如,Anthropic 以 Vertex AI 上的服务形式提供其 Claude 模型。

  • 可以在 Vertex AI 或其他平台上部署开放模型(如 Llama)。

  • MedLM 是面向医疗保健行业微调的一系列基础模型。

认证和安全控制

Vertex AI 支持 CMEK、VPC Service Controls、数据驻留和 Access Transparency。生成式 AI 功能有一些限制。如需了解详情,请参阅生成式 AI 安全控制。

大模型技术分享

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

GPT 自回归语言模型架构、数学原理及内幕-简介

GPT 自回归语言模型架构、数学原理及内幕-简介

基于 Transformer 的 Rasa Internals 解密之 Retrieval Model 剖析-简介

基于 Transformer 的 Rasa Internals 解密之 Retrieval Model 剖析-简介

Transformer语言模型架构、数学原理及内幕机制-简介

Transformer语言模型架构、数学原理及内幕机制-简介

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/702756.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何挑选靠谱的软件开发公司?

在数字化的大潮中,企业商家都明白一个道理:没有一艘强大的软件开发公司“战舰”,想在商海中乘风破浪可不容易。但问题是,市场上那么多软件开发公司,如何挑选出最靠谱的那一家呢?别急,这篇文章就…

进程和内存管理

内存的使用和剩余情况 当前cpu的负载情况 找进程的id 结束某个进程 检查内存: 方法一:/proc/meminfo注意:这是个伪文件,这个文件记录了内存的相关信息,不可以用vi打开,应该用cat查看方法二:fre…

数字员工将重塑工作与生产的未来格局?

数字员工,由AI、机器学习和自动化技术驱动,正逐渐取代或协助人类完成从基础到高端的任务,极大提升工作效率,并改变工作认知。它们不仅影响各行业,还重塑人与机器、社会、自然的关系。与二十世纪末的国企下岗变革相比&a…

SaaS企业营销:如何通过联盟计划实现销售增长?

联盟营销计划在国外saas行业非常盛行,国内如何借鉴国外的成功案例运用联盟计划实现销售增长呢?林叔今天以最近新发现的leadpages为例分享下经验。 Leadpages是一款用户友好的落地页制作工具,提供多种预设计模板、A/B测试和分析功能&#xff0…

实例详解C/C++中static与extern关键字的使用

目录 1、概述 2、编译C++代码时遇到的变量及函数重复定义的问题 3、用 extern 声明外部变量 4、extern与全局函数 5、为何在变量和函数前添加一个static关键字编译就没问题了呢? 6、静态局部变量 7、函数的声明与定义都放置到一个头文件中,不使用static,通过宏控制去…

安灯(andon)系统如何帮助工厂流水线实现精益生产

在当今竞争激烈的制造业领域,实现精益生产已成为众多工厂追求的目标。而安灯(Andon)系统在这一过程中发挥着至关重要的作用。 安灯(Andon)系统通过及时反馈和沟通机制,让生产过程中的问题能够迅速被察觉和解…

Si24R05—高度集成的低功耗 2.4G+125K SoC 芯片

Si24R05是一款高度集成的低功耗SoC芯片,具有低功耗、Low Pin Count、宽电压工作范围,集成了13/14/15/16位精度的ADC、LVD、UART、SPI、I2C、TIMER、WUP、IWDG、RTC、无线收发器、3D低频唤醒接收器等丰富的外设。内核采用RISC-V RV32IMAC(2.6 …

VOP | Point Cloud

目录 Point Cloud Open —— 打开点云文件并搜索源位置周围的点 Point Cloud Find —— 返回最近点的点号列表 Point Cloud Find Radius —— 返回最近点的点号列表并考虑被搜索点的半径 Point Cloud Filter —— 过滤查询到的点以生成加权值 Point Cloud Farthest —— 查…

第二证券股市资讯:半导体,突发!

半导体又现突发! 商场忽然传出,拜登政府正在考虑约束我国获取应用在人工智能(AI) 芯片上的全栅级晶体管技能(Gate-all-around, GAA) ,但不过现在还不清楚美国官员何时会做出最终决议。从趋势来看,这意味着…

【Ardiuno】实验ESP32单片机自动配置Wifi功能(图文)

这里小飞鱼按照ESP32的示例代码,实验一下wifi的自动配置功能。所谓的自动配置,就是不用提前将wifi的名称和密码写到程序里,这样可以保证程序在烧录上传后,可以通过手机端的软件来进行配置,可以避免反复修改代码&#x…

【产品经理】ERP对接电商平台

电商ERP对接上游平台,会需要经历几个步骤环节,包括店铺设置等。 电商ERP对接上游电商平台,其主要设置为店铺设置、商品同步、库存同步,本次讲解下店铺设置应该如何进行设置,以及在设置过程中的可能出现的踩坑事项。 …

JAVA面试题:Redis分布式锁

Redis分布式锁 分布式锁使用的场景 集群情况下的定时任务,抢单,幂等性等场景 抢券场景 查询库存 -> 扣减库存 多个并发线程同时查询库存,出现超卖问题 添加互斥锁 所有线程执行操作之前必须尝试获取锁 保证一次只有一个线程能走查询库存->扣减库存的流程 Redis分…

物业管理的隐形杀手:纸质点检表,你还在用吗?

在日常的生活中,我们经常会看到小区物业保洁、客服人员在工作岗位忙忙碌碌,但忽略了默默为我们提供舒适环境的“隐形守护者”——物业设施设备。然而,一旦这些设备出现故障,我们的日常生活就会陷入混乱。那么,如何确保…

Codesys中根据时间生成随机数字

一、 说明 LTIME()函数返回LTIME 时间类型数据 这个函数产生自系统启动以来经过的时间,以纳秒为单位,以扫描周期1ms为例,这个函数每次获得的纳妙数是随机的,没有规律。 二、作用 例如用来生成0到100的随机数,可以用L…

Keepalived LVS群集

一、Keepalived案例分析 企业应用中,单台服务器承担应用存在单点故障的危险 单点故障一旦发生,企业服务将发生中断,造成极大的危害 二、Keepalived工具介绍 专为LVS和HA设计的一款健康检查工具 支持故障自动切换(Failover&#…

乡镇联盟一镇一码联合创始人第一届第二次研讨会在中山圆满落幕

乡镇联盟一镇一码联合创始人第一届第二次研讨会在中山圆满落幕 近日,由“乡镇联盟一镇一码”项目的联合创始人余向强先生亲自主持的第一届第二次研讨会在中山成功举行。此次研讨会汇聚了来自全国各地的乡镇代表、行业专家及联盟核心成员,共同探讨乡镇发…

面向计算病理学的通用基础模型| 文献速递-视觉通用模型与疾病诊断

Title 题目 Towards a general-purpose foundation model for computational pathology 面向计算病理学的通用基础模型 01 文献速递介绍 组织图像的定量评估对于计算病理学(CPath)任务至关重要,需要从全幻灯片图像(WSIs&…

ITIL4背景下,ITSM产品应具备哪些特点?

点击进入IT管理知识库 随着信息技术的不断发展和普及,IT服务管理(ITSM)在企业中的地位日益凸显。而在ITIL4框架的指导下,ITSM产品的特点也随之发生了变化,更加注重灵活性、数字化和服务导向。本文将就ITIL4背景下&…

MemFire Cloud:为中国宝宝打造的一站式应用开发平台

在当今移动互联网时代,应用开发已经成为了许多企业和个人的迫切需求。然而,对于许多开发者来说,搭建服务往往是一个十分繁琐的过程,需要耗费大量的时间和精力。本文将带您探索应用开发前的繁琐之处以及如何通过MemFire Cloud轻松摆…

巴伦在接收链路中的应用

一、巴伦的定义 "巴伦"(Balun),是一种平衡-不平衡转换器,通常用于将平衡信号(如差分信号)转换为不平衡信号(如单端信号),或者反之。巴伦在无线通信、广播、天…