C语言学习系列-->看淡指针(1)

在这里插入图片描述

文章目录

  • 一、概述
  • 二、指针变量和地址
    • 2.1 取地址操作符
    • 2.2 指针变量和解引用操作符
      • 2.2.1 指针变量
      • 2.2.2 拆解指针类型
      • 2.2.4 解引用操作符
    • 2.3 指针变量的大小
  • 三、指针变量的意义
    • 3.1 指针的解引用
    • 指针+-整数
  • 四、 const修饰指针
  • 五、指针运算
    • 5.1 指针+- 整数
    • 5.2 指针-指针
    • 5.3 指针的关系运算
  • 六、野指针
    • 概述
    • 6.1 野指针成因
    • 6.2 如何规避野指针
  • 七、assert断言
  • 八、指针的使用和传址调用
    • 8.1 传址调值
  • strlen模拟实现

一、概述

在大学的宿舍里,每个宿舍都有属于自己的编号(比如:222),每一栋楼也有属于自己名字或者编号(比如:慧苑,B05)。通过这些编号,我们在点外卖的时候,直接将宿舍楼和宿舍号写在地址上,外卖小哥就会将你所点的食物送到对应的宿舍。如果,没有这些编号,你该怎么直接描述地址呢?让小哥一个一个找吗?效率低。

在计算机中,也和上述案例一样。

计算上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数据也会放回内存中,那我们买电脑的时候,电脑上内存是8GB/16GB/32GB等,那这些内存空间如何⾼效的管理呢?

其实也是把内存划分为⼀个个的内存单元,每个内存单元的⼤⼩取1个字节。

补充:关于计算机中常见的单位:

bit - ⽐特位
byte - 字节
KB
MB
GB
TB
PB
1byte = 8bit
1KB = 1024byte
1MB = 1024KB
1GB = 1024MB
1TB = 1024GB
1PB = 1024TB

在这里插入图片描述

每个内存单元就相当于一个学生的宿舍,1个字节里面8个比特位,就相当于一个宿舍里面住了8个学生。

每个内存单元都有对应的编号,相当于每个宿舍都有自己的宿舍号,有了这个内存单元的编号,CPU就可以快速找到⼀个内存空间。

⽣活中我们把⻔牌号也叫地址,在计算机中我们把内存单元的编号也称为地址。C语⾔中给地址起了新的名字叫:指针。

于是,你可以这么理解:内存的编号 = 地址 = 指针

二、指针变量和地址

2.1 取地址操作符

“ & ” 这个符号,在前面scanf()函数中我们遇到过,是取地址符号

# define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>
int main()
{
	int a = 10;
	&a;
	printf("%p\n", &a);
	return 0;
}

会打印处理:006FFD70

&a取出的是a所占4个字节中地址较⼩的字节的地
址。

在这里插入图片描述

虽然整型变量占⽤4个字节,我们只要知道了第⼀个字节地址,顺藤摸⽠访问到4个字节的数据也是可⾏的。

2.2 指针变量和解引用操作符

2.2.1 指针变量

0x006FFD70,这个数值有时候也是需要存储起来,⽅便后期再使⽤的

一般存在 指针变量

# define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>
int main()
{
	int a = 10;
	int* pa = &a;//取出a的地址并存储到指针变量pa中

	return 0;
}

指针变量也是一种变量,只不过这种变量是用来存放地址的

2.2.2 拆解指针类型

int a = 10;
int * pa = &a;

这⾥pa左边写的是 int** 是在说明pa是指针变量,⽽前⾯的 int 是在说明pa指向的是整型(int)类型的对象。

在这里插入图片描述

char ch = 'w';
pc = &ch;
char *pc = &ch;

2.2.4 解引用操作符

我们只要拿到了地址(指针),就可以通过地址(指针)找到地址(指针)指向的对象,这⾥必须学习⼀个操作符叫解引⽤操作符(*)。

# define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>
int main()
{
	int a = 100;
	int* pa = &a;
	*pa = 0;
	return 0;
}

*pa 的意思就是通过pa中存放的地址,找到指向的空间,*pa其实就是a变量了;所以==*pa = 0==,这个操作符是把a改成了0.

2.3 指针变量的大小

指针变量的⼤⼩取决于地址的⼤⼩
32位平台下地址是32个bit位(即4个字节)
64位平台下地址是64个bit位(即8个字节)
注意指针变量的⼤⼩和类型是⽆关的,只要指针类型的变量,在相同的平台下,⼤⼩都是相同的。

#include <stdio.h>

int main()
{
	printf("%zd\n", sizeof(char*));
	printf("%zd\n", sizeof(short*));
	printf("%zd\n", sizeof(int*));
	printf("%zd\n", sizeof(double*));
	return 0;
}

在这里插入图片描述

三、指针变量的意义

既然指针变量在同一环境下的大小都一样,难么还有意义吗?

3.1 指针的解引用

//代码1
#include <stdio.h>
int main()
{
 int n = 0x11223344;
 int *pi = &n; 
 *pi = 0; 
 return 0;
}
//代码2
#include <stdio.h>
int main()
{
 int n = 0x11223344;
 char *pc = (char *)&n;
 *pc = 0;
 return 0;
}

调试我们可以看到,代码1会将n的4个字节全部改为0,但是代码2只是将n的第⼀个字节改为0。

结论:指针的类型决定了,对指针解引⽤的时候有多⼤的权限(⼀次能操作⼏个字节)。
⽐如: char* 的指针解引⽤就只能访问⼀个字节,⽽ int* 的指针的解引⽤就能访问四个字节。

指针±整数

# define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>
int main()
{
	int n = 10;
	char* pc = (char*)&n;
	int* pi = &n;

	printf("%p\n", &n);
	printf("%p\n", pc);
	printf("%p\n", pc + 1);
	printf("%p\n", pi);
	printf("%p\n", pi + 1);
	return 0;
}

运行结果:

在这里插入图片描述

我们可以看出, char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。

这就是指针变量的类型差异带来的变化。

结论:指针的类型决定了指针向前或者向后⾛⼀步有多⼤(距离)。

四、 const修饰指针

const 修饰变量,使得这个变量不能被修改
const 修饰指针

  1. const放在*的左边
    限制的是指针指向的内容,意思是不能通过指针来修改指针指向的内容,但是指针变量本身是可以修改的
  2. const放在*的右边
    限制的是指针变量本身,意思是不能修改指针变量的指向,但是可以修改指针指向的内容
# define _CRT_SECURE_NO_WARNINGS

#include <stdio.h> 

int main() {

    int a = 10;
    int b = 10;

    const int* p1 = &a;
    p1 = &b; //正确
    //*p1 = 100;  报错
    printf("const修饰的是指针时,指针指向可以改,指针指向的值不可以更改\n");

    int* const p2 = &a;
    //p2 = &b; //错误
    *p2 = 100; //正确
    printf("const修饰的是常量时,指针指向不可以改,指针指向的值可以更改\n");

    //const既修饰指针又修饰常量
    const int* const p3 = &a;
    //p3 = &b; //错误
    //*p3 = 100; //错误
    printf("const既修饰指针又修饰常量时,指针指向和指针指向的值都不可以更改\n");

    return 0;

}

五、指针运算

5.1 指针± 整数

因为数组在内存中是连续存放的,只要知道第⼀个元素的地址,顺藤摸⽠就能找到后⾯的所有元素。

# define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>
//指针+- 整数
int main()
{
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	int* p = &arr[0];
	int i = 0;
	int sz = sizeof(arr) / sizeof(arr[0]);
	for (i = 0; i < sz; i++)
	{
		printf("%d ", *(p + i));//p+i 这⾥就是指针+整数
	}
	return 0;
}

5.2 指针-指针

# define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>
int my_strlen(char* s)
{
	char* p = s;
	while (*p != '\0')
		p++;
	return p - s;
}
int main()
{
	printf("%d\n", my_strlen("abc"));
	return 0;
}

5.3 指针的关系运算

# define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>
int main()
{
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	int* p = &arr[0];
	int i = 0;
	int sz = sizeof(arr) / sizeof(arr[0]);
	while (p < arr + sz) //指针的⼤⼩⽐较
	{
		printf("%d ", *p);
		p++;
	}
	return 0;
}

六、野指针

概述

野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)

野指针即野狗,野狗即野指针,如果我们放任不管,后果不堪设想,存在危险。

6.1 野指针成因

1、指针没有初始化

# define _CRT_SECURE_NO_WARNINGS


#include <stdio.h>
int main()
{
	int* p;//局部变量指针未初始化,默认为随机值
	*p = 20;
	return 0;
}

2指针越界访问

# define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>
int main()
{
	int arr[10] = { 0 };
	int* p = &arr[0];
	int i = 0;
	for (i = 0; i <= 11; i++)
	{
		//当指针指向的范围超出数组arr的范围时,p就是野指针
		*(p++) = i;
	}
	return 0;
}

3、指针指向的空间释放

# define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>
int* test()
{
	int n = 100;
	return &n;
}
int main()
{
	int* p = test();
	printf("%d\n", *p);
	return 0;
}

6.2 如何规避野指针

针对上面的成因,我们就能去避免出现野指针

1、指针初始化

如果明确知道指针指向哪⾥就直接赋值地址,如果不知道指针应该指向哪⾥,可以给指针赋值NULL.
NULL 是C语⾔中定义的⼀个标识符常量,值是0,0也是地址,这个地址是⽆法使⽤的,读写该地址
会报错。

   #ifdef __cplusplus
      #define NULL 0
   #else
      #define NULL ((void *)0)
   #endif
#include <stdio.h>
int main()
{
	int num = 10;
	int* p1 = &num;
	int* p2 = NULL;

	return 0;
}

2、避免越界

就是不超过范围,自己把握

3、指针变量不再使⽤时,及时置NULL,指针使⽤之前检查有效性

当指针变量指向⼀块区域的时候,我们可以通过指针访问该区域,后期不再使⽤这个指针访问空间的
时候,我们可以把该指针置为NULL。因为约定俗成的⼀个规则就是:只要是NULL指针就不去访问,
同时使⽤指针之前可以判断指针是否为NULL。

就是把野狗给拴起。拴起来后,也不能接近它,要绕着走,不能条狗,可远观,不可亵玩焉。

对有指针,我们要先判断是否为NULL,不是的话,才可以去使用

int main()
{
 int arr[10] = {1,2,3,4,5,67,7,8,9,10};
 int *p = &arr[0];
 for(i=0; i<10; i++)
 {
 *(p++) = i;
 }
 //此时p已经越界了,可以把p置为NULL
 p = NULL;
 //下次使⽤的时候,判断p不为NULL的时候再使⽤
 //...
 p = &arr[0];//重新让p获得地址
 if(p != NULL) //判断
 {
 //...
 }
 return 0;
}

4、 避免返回局部变量的地址

七、assert断言

使用

#define NDEBUG
#include <assert.h>

assert() 宏接受⼀个表达式作为参数。如果该表达式为真(返回值⾮零), assert() 不会产⽣
任何作⽤,程序继续运⾏。如果该表达式为假(返回值为零), assert() 就会报错,在标准错误
流 stderr 中写⼊⼀条错误信息,显⽰没有通过的表达式,以及包含这个表达式的⽂件名和⾏号。

⼀般我们可以在debug中使⽤,在release版本中选择禁⽤assert就⾏,在VS这样的集成开发环境中,
在release版本中,直接就是优化掉了。这样在debug版本写有利于程序员排查问题,在release版本不
影响⽤⼾使⽤时程序的效率。

八、指针的使用和传址调用

8.1 传址调值

举个例子:写一个函数,交换两个整数

经过深思熟虑,你写出了下面的代码:

# define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>
void Swap1(int x, int y)
{
	int tmp = x;
	x = y;
	y = tmp;
}
int main()
{
	int a = 0;
	int b = 0;
	scanf("%d %d", &a, &b);
	printf("交换前:a=%d b=%d\n", a, b);
	Swap1(a, b);
	printf("交换后:a=%d b=%d\n", a, b);
	return 0;
}

运行后,发现并没有实现你想要的结果。并没有实现两个整数的交换

实参传递给形参的时候,形参会单独创建⼀份临时空间来接收实参,对形参的修改不影响实
参。所以Swap是失败的了。

此时,我们传递地址:

# define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>
void Swap(int* px, int* py)
{
	int z = 0;
	z = *px;//z = a
	*px = *py;//a=b
	*py = z;//b = a
}

int main()
{
	int a = 10;
	int b = 20;

	printf("交换前:a=%d b=%d\n", a, b);
	//传址调用
	//
	Swap(&a, &b);

	printf("交换后:a=%d b=%d\n", a, b);
	return 0;
}

strlen模拟实现

# define _CRT_SECURE_NO_WARNINGS

#include<stdio.h>
#include<assert.h>

size_t my_strlen(const char* str) {
	size_t cnt = 0;
	assert(str!=NULL);
	while (*str!='\0') {
		cnt++;
		str++;
	}
	return cnt;
}

int main() {
	size_t len = my_strlen("abcdefg");
	printf("%zd\n", len);
	return 0;
}


在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/70025.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

音视频研发分享:关键帧截图+wasm快照--我又做了一件有益于社会的事情

音视频研发分享&#xff1a;关键帧截图wasm快照--我又做了一件有益于社会的事情 简单的一个视频设备快照功能到底有多费事多费电&#xff1f;新的方法有方法&#xff01; 省了多少电&#xff1f; 简单的一个视频设备快照功能到底有多费事多费电&#xff1f; 以前&#xff0c;我…

C++模板,STL(Standard Template Library)

这篇文章的主要内容是C中的函数模板、类模板、STL的介绍。 希望对C爱好者有所帮助&#xff0c;内容充实且干货&#xff0c;点赞收藏防止找不到&#xff01; 再次感谢每个读者和正在学习编程的朋友莅临&#xff01; 更多优质内容请点击移驾&#xff1a; C收录库&#xff1a;重生…

HTML5 Canvas和Svg:哪个简单且好用?

HTML5 Canvas 和 SVG 都是基于标准的 HTML5 技术&#xff0c;可用于创建令人惊叹的图形和视觉体验。 首先&#xff0c;让我们花几句话介绍HTML5 Canvas和SVG。 什么是Canvas? Canvas&#xff08;通过 标签使用&#xff09;是一个 HTML 元素&#xff0c;用于在用户计算机屏幕…

智能合约 -- 常规漏洞分析 + 实例

1.重入攻击 漏洞分析 攻击者利用合约漏洞&#xff0c;通过fallback()或者receive()函数进行函数递归进行持续取钱。 刚才试了一下可以递归10次&#xff0c;貌似就结束了(version: 0.8.20)。 直接看代码: 银行合约&#xff1a;有存钱、取钱、查看账户余额等函数。攻击合约:…

半关闭、端口复用与IO多路复用

文章目录 半关闭端口复用IO多路复用&#xff08;IO多路转接&#xff09;模型解决措施 sellect缺点 poll应用缺点 epoll应用工作模式 半关闭 使用close(fd);所对应的文件描述符写和读都关闭了。 端口复用 可以解决绑定失败的问题。 IO多路复用&#xff08;IO多路转接&#…

【冒泡排序及其优化】

冒泡排序及其优化 冒泡排序核心思想 冒泡排序的核⼼思想就是&#xff1a;两两相邻的元素进⾏⽐较 1题目举例 给出一个倒序数组&#xff1a;arr[10]{9,8,7,6,5,4,3,2,1,0} 请排序按小到大输出 1.1题目分析 这是一个完全倒序的数组&#xff0c;所以确定冒泡排序的趟数&#xff0…

低代码助力传统制造业数字化转型策略

随着制造强国战略逐步实施&#xff0c;制造行业数字化逐渐进入快车道。提高生产管理的敏捷性、加强产品的全生命周期质量管理是企业数字化转型的核心诉求&#xff0c;也是需要思考的核心价值。就当下传统制造业的核心问题来看&#xff0c;低代码是最佳解决方案&#xff0c;那为…

用python来爬取某鱼的商品信息(1/2)

目录 前言 第一大难题——找到网站入口 曲线救国 模拟搜索 第二大难题——登录 提一嘴 登录cookie获取 第一种 第二种 第四大难题——无法使用导出的cookie 原因 解决办法 最后 出现小问题 总结 前言 本章讲理论&#xff0c;后面一节讲代码 拿来练练手的&#xff…

[保研/考研机试] KY183 素数 北京航空航天大学复试上机题 C++实现

题目链接&#xff1a; 素数https://www.nowcoder.com/share/jump/437195121691718444910 描述 输入一个整数n(2<n<10000)&#xff0c;要求输出所有从1到这个整数之间(不包括1和这个整数)个位为1的素数&#xff0c;如果没有则输出-1。 输入描述&#xff1a; 输入有多…

Attacks in NLP

一、 Introduction NLP对抗攻击是人工智能对抗攻击的一个重要的组成部分&#xff0c;但是最近几年才逐渐开始兴起&#xff0c;究其原因在于NLP对抗攻击与传统computer vision或者audio对抗攻击有很大的不同&#xff0c;主要在于值空间的连续性&#xff08;CV、audio&#xff0…

瓴羊发布All in One 产品,零售SaaS的尽头是DaaS?

“打破烟囱、化繁为简&#xff0c;让丰富的能力、数据和智能All in One”&#xff0c;这是瓴羊新发布的产品瓴羊One承担的使命&#xff0c;也意味着瓴羊DaaS事业迈入了一个新阶段。 成立伊始&#xff0c;瓴羊就打出了“Not SaaS&#xff0c;But DaaS”旗号&#xff0c;将自己的…

【BI系统】选型常见问题解答二

本文主要总结BI系统选型过程中遇见的常见问题&#xff0c;并针对性做出回答&#xff0c;希望能为即将选型&#xff0c;或正在选型BI系统的企业用户们提供一个快速了解通道。 有针对金蝶云星空的BI方案吗&#xff1f;能起到怎样的作用&#xff1f; 答&#xff1a;奥威BI系统拥…

React UI组件库

1 流行的开源React UI组件库 1 material-ui(国外) 官网: Material UI: React components based on Material Design github: GitHub - mui/material-ui: MUI Core: Ready-to-use foundational React components, free forever. It includes Material UI, which implements Go…

如何使用 ESP-01S 模块

如何使用 ESP-01S 模块 原始PDF文档 参考&#xff1a; 将 ESP-01 用作 WiFi shield的更好方法 (e-tinkers.com) How do I use ESP8266 ESP-01S WiFi Module with ESP-01S Adapter - Using Arduino / Programming Questions - Arduino Forum ESP-01S WiFi 模块 – 配置布线 -…

面向对象编程的特征:抽象、封装、继承和多态

文章目录 1. 抽象和封装&#xff1a;揭示事物本质&#xff0c;隐藏细节抽象封装 2. 继承&#xff1a;代码复用&#xff0c;提高可维护性3. 多态&#xff1a;灵活应对不同情境总结 面向对象编程&#xff08;Object-Oriented Programming&#xff0c;OOP&#xff09;是一种现代的…

Flv格式视频怎么转MP4?视频格式转换方法分享

FLV格式的视频是一种早期的视频格式&#xff0c;不支持更高的分辨率和比特率&#xff0c;这意味着视频的清晰度和质量受限制&#xff0c;无法很好地保留细节和质量&#xff0c;这种格式的视频已经逐渐被更高质量的视频格式所替代&#xff0c;例如MP4格式&#xff0c;不仅具有很…

端口输入的数据为什么要打拍?

一次作者在开发图像时候&#xff0c;对输入的图像没有打拍&#xff0c;直接输出给显示终端&#xff0c;时好时坏&#xff0c;或者图像颜色不正确&#xff0c;最终经过打拍解决了此问题。 //配置为16-Bit SDR ITU-R BT.656模式时pixel_data[23:16]为高阻。always (posedge pixe…

采用pycharm在虚拟环境使用pyinstaller打包python程序

一年多以前&#xff0c;我写过一篇博客描述了如何虚拟环境打包&#xff0c;这一次有所不同&#xff0c;直接用IDE pycharm构成虚拟环境并运行pyinstaller打包 之前的博文&#xff1a; 虚拟环境venu使用pyinstaller打包python程序_伊玛目的门徒的博客-CSDN博客 第一步&#xf…

Java基础篇--运算符

目录 算术运算符 赋值运算符 比较运算符 逻辑运算符 条件运算符&#xff08;?:&#xff09; instanceof 运算符 Java运算符优先级 在程序中经常出现一些特殊符号&#xff0c;如、-、*、、>等&#xff0c;这些特殊符号称作运算符。运算符用于对数据进行算术运算、赋值…

SpringBoot MDC全局链路解决方案

需求 在访问量较大的分布式系统中&#xff0c;时时刻刻在打印着巨量的日志&#xff0c;当我们需要排查问题时&#xff0c;需要从巨量的日志信息中找到本次排查内容的日志是相对复杂的&#xff0c;那么&#xff0c;如何才能使日志看起来逻辑清晰呢&#xff1f;如果每一次请求都…