近年来,大型语言模型(LLM)在自然语言处理领域取得了显著的进展,但它们也存在一些问题,如容易产生幻觉和无法提供最新的知识。为了解决这些问题,研究人员提出了一种名为检索增强生成(RAG)的技术,该技术通过提供相关的检索内容来增强LLM的能力。然而,RAG是否真的能帮助LLM更可靠地回答问题呢?
最近,斯坦福大学的研究人员进行了一项研究,旨在探讨RAG对LLM的影响。他们发现,在大多数情况下,提供正确的检索信息可以帮助LLM纠正错误并提供更准确的答案。然而,当检索到的信息不正确或与LLM的内部知识相矛盾时,LLM可能会受到误导,从而产生不准确的回答。
这项研究使用了GPT-4和其他一些LLM,并在不同的数据集上进行了测试,包括那些有参考文档和没有参考文档的数据集。结果显示,当提供正确的检索信息时,LLM的准确率可以达到94%。然而,当参考文档被故意修改以包含错误信息时,LLM更有可能重复这些错误,尤其是当它们的内部知识较弱时。
研究人员还发现,当修改后的信息与LLM的内部知识相差较大时,LLM更有可能坚持自己的知识,而不是接受错误的信息。这表明LLM具有一定的抵抗力,可以防止被误导,但这种抵抗力的强度取决于模型的内部知识和对信息的信心。
这项研究的结果强调了LLM内部知识和检索信息之间的紧张关系。虽然RAG可以帮助LLM提供更准确的答案,但如果检索到的信息不正确或与LLM的内部知识相矛盾,它也可能导致错误的回答。因此,研究人员建议在使用RAG时需要谨慎,并确保检索到的信息是准确和可靠的。
此外,研究人员还发现不同的提示技术(如严格遵循或松散遵循)可以影响LLM对RAG的偏好。严格提示技术可以迫使LLM更倾向于接受检索到的信息,而松散提示技术可以鼓励LLM在接受检索信息之前进行更多的推理。这表明提示技术的选择可以对LLM的行为产生重要影响,因此需要根据具体情况进行选择。
除了GPT-4,研究人员还使用了GPT-3.5和Mistral-7B等其他LLM进行了测试。虽然这些模型的性能较低,但它们也显示出与GPT-4相似的趋势,即当检索到的信息与内部知识相矛盾时,它们更有可能坚持自己的知识。
这项研究的局限性在于它只涵盖了有限的领域和数据集,并且没有考虑更复杂的情况,如多步骤逻辑、文档综合或其他高级推理。此外,研究人员使用的修改方法可能无法完全模拟真实世界中可能出现的错误类型,如拼写错误、歧义或缺失信息。
然而,这项研究仍然为我们提供了宝贵的见解,了解LLM如何处理不同可信度、准确性和一致性的信息。随着LLM在各个领域的广泛应用,如医学和法律,了解它们如何与信息交互以及如何受到外部因素的影响变得越来越重要。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
全套 《LLM大模型入门+进阶学习资源包》↓↓↓ 获取~
👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈