人工智能和机器学习这两个概念有什么区别?

什么是人工智能?

先来说下人工智能,人工智能(Artificial Intelligence),英文缩写为AI,通俗来讲就是用机器去做在过去只有人能做的事。

人工智能最早是由图灵提出的,在1950年,计算机科学之父,人工智能科学之父,艾伦▪图灵发表了一篇论文:Computing Machinery and Intelligence(计算机器与智能),这篇文章开启了计算机与智能模拟的科学讨论。

人工智能在当时只是理论设想,能够落地连图灵自己都不知道。图灵在文章的第一句就提出一个疑问:"Can machines think?" ,机器会思考吗?在这篇文章中,图灵针对机器是否能够模拟人类智能,表达了自己的观点,其中一条就是:计算机模拟人类智能的任务,任重而道远。

1955年,在达特茅斯学院任教的约翰麦卡锡组建专家组希望能够给人工智能一个清晰定义和研究方向,选定了Artificial Intelligence一词。

1956年,夏天约翰麦卡锡和马文闵斯基发起了达特茅斯会议,达特茅斯会议正式确立了AI这一术语,并且开始从学术角度对AI展开了严肃而精专的研究。在那之后不久,最早的一批人工智能学者和技术开始涌现,达特茅斯会议被广泛认为是人工智能诞生的标志。

人工智能是计算机科学的一个分支,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。它由不同的领域组成,如机器学习,计算机视觉等,研究领域包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

总的来说,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。

在1956年的这次会议之后,长达十余年的时间里,计算机被广泛应用于数学和自然语言领域,用来解决代数、几何和英语问题。这让很多学者对人工智能的发展充满信心,“二十年内,机器将能完成人能做到的一切。”

70年代,受限于计算能力的影响,人工智能进入了第一次低迷期。1973年Lighthill针对英国AI研究状况的报告。批评了AI在实现“宏伟目标”上的失败。由此,人工智能遭遇了长达6年的科研深渊。

1980年,卡内基梅隆大学采用人工智能程序为数字设备公司设计了一套名为XCON的“专家系统”为该公司每年节省下来超过四千美元经费。在这种商业模式的启发下,衍生出了像Symbolics、Lisp Machines等和IntelliCorp、Aion等这样的硬件,人工智能暂时崛起。

1987年时,苹果和IBM公司生产的台式机性能都超过了Symbolics等厂商生产的通用计算机。人工智能被抛弃,再次被打入冷宫。

1997年5月11日,IBM的计算机系统“深蓝”战胜了国际象棋世界冠军卡斯帕罗夫,又一次在公众领域引发了现象级的AI话题讨论。这是人工智能发展的一个里程碑,标志着人工智能再次崛起。

2016年,DeepMind开发的AlphaGo横空出世,彻底引爆了全球人工智能发展热潮,此后,以机器学习,尤其是深度学习为代表的新一代人工智能在更加先进、复杂、自主的方向上取得了突破性进展,给经济和社会发展带来了新的变革与机遇。

纵观人工智能诞生的60年间,我们先后经历了Pre-AI时代、黄金时代、第一次低谷、第二次繁荣、第二次低谷,目前我们正处在人工智能的第三次浪潮之中。经过了60余年的发展,人工智能终于脱掉了起初因为不够智能而被冠以的“人工智障”的帽子。

如今人工智能已经走进千家万户而且应用在生活中了,对于普通大众来说,它已经是一个耳熟能详的名词。

什么是机器学习?

机器学习,MachineLearning(简称ML),机器学习领域知名学者Tom M.Mitchell曾给机器学习做如下定义:

如果计算机程序针对某类任务T的性能(用P来衡量)能通过经验E来自我改善,则认为关于T和P,程序对E进行了学习。

通俗来讲,计算机针对某一任务,从经验中学习,并且能越做越好,这一过程就是机器学习。

一般情况下,“经验”都是以数据的方式存在的,计算机程序从这些数据中学习。学习的关键是模型算法,它可以学习已有的经验数据,用以预测未知数据。

举个例子,垃圾邮件过滤器就是一个机器学习的程序,它通过垃圾邮件(比如用户手动标记的垃圾邮件)以及常规邮件(非垃圾邮件)的示例,来学习标记垃圾邮件。系统用来学习的这些示例,我们称之为训练集。每一个训练示例称为训练实例或者是训练样本。

在本例中,任务 T 就是给新邮件标记垃圾邮件,经验 E 则是训练数据,那么衡量性能表现的指标 P 则需要我们来定义,例如,我们可以使用被正确分类的邮件的比率来衡量。这个特殊的性能衡量标准称为精度。

机器学习已经得到了广泛的应用,比如面部识别;文字语音识别;垃圾邮件过滤器;网上购物;查看推荐;信用卡欺诈检测等等都用到了相关技术。

人工智能和机器学习的区别和联系?

人工智能(AI)的概念是在1955 年提出的;机器学习(ML)概念是在1990 年提出的;深度学习(DL)概念是在 2010 年提出的。

深度学习包含于机器学习,而机器学习又包含于人工智能。


人工智能是一个更广泛的概念,即让机器能够以我们认为“智能”的方式执行任务。

人工智能是一种具体的结果,而机器学习是我们达到人工智能的一个途径。

总的来说:

机器学习是人工智能的一个子集,它的目的是让计算机能够更好的访问和利用数据,并且在没有人工干预的情况下从中检索出事件发展的内在规律。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/698505.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【背就有效】软考中项计算公式汇总,简答题轻松拿下

宝子们注意啦!系统集成管理师的报名8月就要开始啦!你准备好迎接挑战了吗? 备考下半年软考的小伙伴们,在这里给大家准备了一份超实用的备考秘籍——系统集成项目管理工程师计算公式汇总。亲测有效,每天只需抽出一点时间…

数据库错误[ERR] 1071 - Specified key was too long; max key length is 1000 bytes

环境:phpstudy的mysql8 索引长度问题: 试了很多解决办法,例如需改配置: set global innodb_large_prefixON; set global innodb_file_formatBARRACUDA; 试了还是有问题,直接启动不了了。因为mysql8取消了这个配置。…

[linux]基于Ubuntu24.04原内核6.8.0升级到6.9.0

物理机操作系统: 虚拟机操作系统: Ubuntu 24.04 下载地址: https://mirror.nju.edu.cn/ubuntu-releases/24.04/ubuntu-24.04-desktop-amd64.iso VM版本信息: 内核源代码来源: https://ftp.sjtu.edu.cn/sites/ftp.kern…

React+TS前台项目实战(六)-- 全局常用组件Button封装

文章目录 前言Button组件1. 功能分析2. 代码注释说明3. 使用方式4. 效果展示 总结 前言 今天这篇主要讲全局按钮组件封装,可根据UI设计师要求自定义修改。 Button组件 1. 功能分析 (1)可以通过className属性自定义按钮样式,传递…

ZDH-智能营销-标签模块

目录 主题 项目源码 预览地址 安装包下载地址 标签模块 什么是标签 标签场景分类 标签设计 标签按照场景做了分类,但是运营人员需要感知到吗 标签按照场景做了分类,底层的计算引擎是否需要划分? 标签模块,是否需要涉及…

利安科技上市首日股价大涨:2023营收净利润下滑,募资金额大幅缩水

《港湾商业观察》施子夫 6月7日,宁波利安科技股份有限公司(以下简称,利安科技)正式在深交所创业板挂牌上市,股票简称为利安科技,股票代码300784。 上市当天,利安科技股价大涨348.76%。 2022年…

DriveWorld:一个预训练模型大幅提升检测+地图+跟踪+运动预测+Occ多个任务性能

1. 写在前面 以视觉为中心的自动驾驶技术近期因其较低的成本而引起了广泛关注,而预训练对于提取通用表示至关重要。然而,当前的以视觉为中心的预训练通常依赖于2D或3D预训练任务,忽视了自动驾驶作为4D场景理解任务的时序特征。这里通过引入一…

Golang | Leetcode Golang题解之第135题分发糖果

题目&#xff1a; 题解&#xff1a; func candy(ratings []int) int {n : len(ratings)ans, inc, dec, pre : 1, 1, 0, 1for i : 1; i < n; i {if ratings[i] > ratings[i-1] {dec 0if ratings[i] ratings[i-1] {pre 1} else {pre}ans preinc pre} else {decif dec…

mmdetection使用未定义backbone训练

首先找到你需要用到的 backbone&#xff0c;一般有名的backbone 都会在github有相应的代码开源和预训练权重提供 本文以mobilenetv3 fastercnn 作为举例&#xff0c;在mmdetection中并未提供 mobilenetv3&#xff0c;提供的仅有 mobilenetv2&#xff1b; 在github上找到 mobil…

Selenium三种等待方式的使用!

UI自动化测试&#xff0c;大多都是通过定位页面元素来模拟实际的生产场景操作。但在编写自动化测试脚本中&#xff0c;经常出现元素定位不到的情况&#xff0c;究其原因&#xff0c;无非两种情况&#xff1a;1、有frame&#xff1b;2、没有设置等待。 因为代码运行速度和浏览器…

【Vue】购物车案例-构建项目

脚手架新建项目 (注意&#xff1a;勾选vuex) 版本说明&#xff1a; vue2 vue-router3 vuex3 vue3 vue-router4 vuex4/pinia vue create vue-cart-demo需要勾选上vuex&#xff0c;由于这个项目只有一个页面&#xff0c;vuex可勾可不勾 将原本src内容清空&#xff0c;替换成教学…

VISIO安装教程+安装包

文章目录 01、什么是VISIO&#xff1f;02、安装教程03、常见安装问题解析 01、什么是VISIO&#xff1f; Visio是由微软开发的流程图和图表绘制软件&#xff0c;它是Microsoft Office套件的一部分。Visio提供了各种模板和工具&#xff0c;使用户能够轻松创建和编辑各种类型的图…

SwiftUI七使用UI控件

代码下载 在应用中&#xff0c;用户可以创建一个简介来描述他们自已的个人情况。为了让用户可以编辑自己的简介&#xff0c;需要添加一个编辑模式并设计一个偏好设置界面。这里使用多种通用控件来展示用户的各种数据&#xff0c;并在用户保存他们所做的数据修改时更新地标数据…

PCB 蚀刻因子(Etch Factor)

The standard definition for Etch Factor is to specify it as the ratio of trace thickness / amount of over-etching. This gives the following formula: Etch Factor T/[0.5(W1-W2)] 例如&#xff0c;W1 5.2mil&#xff0c; W1 4.2mil&#xff0c; T 3.7mil&#…

四维轻云|支持多源数据融合、城市级实景三维模型展示

四维轻云是一款轻量化的地理空间数据管理云平台&#xff0c;具有项目管理、数据上传、场景搭建、发布分享、素材库等功能模块&#xff0c;支持多用户在线协作管理&#xff0c;实现了轻量化、便捷化的空间数据应用。 1、多源数据融合 平台支持管理、展示各类空间数据&#xff…

差动放大器

差动器的出现是为了解决直接耦合电路存在的零点漂移问题&#xff0c;另外&#xff0c;差动放大器还有灵活的输入&#xff0c;输出方式。 一&#xff0c;基本差动放大器 差动放大器在电路结构上具有对称性&#xff0c;三极管VT1&#xff0c;VT2同型号&#xff0c;R1R2,R3R4,R5…

【天池科普】1. 为啥人人都要学AI

大家好&#xff01;欢迎来到天池的AI科普系列课程&#xff0c;本期是第一期内容。在这个信息爆炸的时代&#xff0c;人工智能&#xff08;AI&#xff09;不仅是技术进步的标志&#xff0c;更是推动社会向前发展的强大引擎。无论你是AI领域的新手&#xff0c;还是有一定基础的学…

助力高考,一组彩色的文字

1、获取文本内容 首先&#xff0c;获取每个<div>元素的文本内容&#xff0c;并清空其内部HTML&#xff08;innerHTML ""&#xff09;。 2、创建<span>元素 然后&#xff0c;它遍历文本的每个字符&#xff0c;为每个字符创建一个新的<span>元素…

【Hudi】编译

目录 编译安装编译环境准备编译Hudi上传源码包修改pom文件新增repository加速依赖下载修改依赖的组件版本 修改源码兼容hadoop3手动安装Kafka依赖1&#xff09;下载jar包2&#xff09;install到maven本地仓库 解决spark模块依赖冲突 执行编译命令编译成功 编译安装 编译环境准…

用友U8 表单视图名查询方法

比如要获取【采购订单】表名和视图名 具体操作如下&#xff1a; 先打开写字板&#xff0c;然后进入U8的采购订单做单界面&#xff0c;按住键盘上的&#xff0c;CtrlshiftC&#xff0c;有的是CtrlC&#xff0c;点增加 然后CtrlV到写字板 key就是采购订单的值 打开SQL 输入语句…