【深度学习】Loss为Nan的可能原因

文章目录

  • 1. 问题情境
  • 2. 原因分析
  • 3. 导致Loss为Nan的其他可能原因

1. 问题情境

在某个网络架构下,我为某个数据项引入了一个损失函数。
这个数据项是nn.Embedding类型的,我加入的损失函数是对nn.Embedding空间做约束。
因为我在没加入优化loss前,我的nn.Embedding的数据不在同一条直线上,希望通过下面这样一个loss,约束它们在同一条直线上:
在这里插入图片描述
我的变量计算是这么写的:

embedding = self.latent_codes(idx) # 通过nn.Embedding,根据idx获得对应的latent codes
vecs = self.latent_codes.weight.data # 获得所有的latent codes
d1 = torch.sum((vecs[0].unsqueeze(0) - embedding) ** 2, dim=1).sqrt() # 计算第i个latent codes到0的距离
d2 = torch.sum((vecs[len(vecs) - 1].unsqueeze(0) - embedding) ** 2, dim=1).sqrt() # 计算第i个latent codes到-1的距离
standard_distance = torch.dist(vecs[0], vecs[len(vecs) - 1], p=2) # 计算0-(-1)的标准距离

然后loss是这么写的:

latent_space_constraint = torch.abs(d1 + d2 - standard_distance) # 约束三点在一条直线上

结果导致了loss为Nan的情况

2. 原因分析

一开始没啥头绪,然后问了一下通义千问,loss为Nan的可能原因,给出的回答是:
------------------------------------
可能是数值稳定性问题:
新损失项的计算可能导致数值下溢或上溢,特别是在涉及指数函数、对数函数或其他可能导致极端值的数学运算时。
解决方案包括添加一个小的正偏移量(例如 1e-8)来避免除以零或对零取对数,或者使用数值稳定的损失函数实现。
------------------------------------
因为上述代码中,idx=0idx=-1(此处用-1表示最后一个变量)得到的d1/d2可能为0,然后导致latent_space_constraint中对应计算结果为0,这可能是导致Nan的结果

于是我直接在loss上加了一个 λ \lambda λ

latent_space_constraint = torch.abs(d1 + d2 - standard_distance) + 1e-8

但是完全没用,还是会出现Nan的问题,于是我问的第二个问题是:解决方案包括添加一个小的正偏移量(例如 1e-8)来避免除以零或对零取对数,或者使用数值稳定的损失函数实现。这个小的正偏移量是在loss上直接加吗?,给出的回答是:
------------------------------------
在深度学习中,为了避免数值不稳定的情况,比如在损失函数中对非常接近零的数取对数或除以接近零的数,我们确实会添加一个小的正偏移量(常被称为 epsilon)。但是,这个偏移量不是直接加到整个损失函数上,而是加到可能会引起数值不稳定的部分上。

------------------------------------
那么我可能引起数值不稳定的地方实际上是d1/d2/standard_distance,所以把代码修改成在数值计算的时候加小的偏移量

embedding = self.latent_codes(idx) # 通过nn.Embedding,根据idx获得对应的latent codes
vecs = self.latent_codes.weight.data # 获得所有的latent codes
d1 = torch.sum((vecs[0].unsqueeze(0) - embedding) ** 2 + 1e-8, dim=1).sqrt() # 计算第i个latent codes到0的距离
d2 = torch.sum((vecs[len(vecs) - 1].unsqueeze(0) - embedding) ** 2 + 1e-8, dim=1).sqrt() # 计算第i个latent codes到-1的距离
standard_distance = torch.dist(vecs[0], vecs[len(vecs) - 1] + 1e-8, p=2) # 计算0-(-1)的标准距离

解决上述问题,loss计算正常,但是还要考虑的是这个loss会不会导致所有embedding趋向同一个点的情况,还要约束0和-1的latent codes不能过于相似

3. 导致Loss为Nan的其他可能原因

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
当在深度学习模型中加入新的损失项后,特定的权重或参数变为 NaN,这通常指向几个关键的问题区域。对于您的情况,pose_latent_codes 中的特定条目(索引为 0 和 5)在一轮优化后变为 NaN,可能的原因如下:

  1. 特定输入导致的数值不稳定

    • 加入的新损失项可能对某些输入特别敏感,导致计算中出现极大的数值或数值下溢,最终产生 NaN。这可能是因为输入数据中的异常值或不适当的数据预处理。
  2. 梯度爆炸

    • 特定输入或损失计算可能导致针对 pose_latent_codes 的梯度变得非常大,特别是对于索引 0 和 5 的条目。这通常发生在深度神经网络中,尤其是当网络层深且梯度在反向传播过程中累积时。
  3. 正则化或惩罚项

    • 如果新加入的损失项包含正则化项(如 L1 或 L2 正则化),并且正则化强度设置得过高,这可能对某些参数造成过度惩罚,导致 NaN。
  4. 数值计算错误

    • 在新损失项的计算中,可能有某些操作(如除以接近零的数、对负数取对数等)导致了数值不稳定,进而产生 NaN。
  5. 代码错误或实现问题

    • 实现新损失项时可能有代码错误,比如数组索引错误、维度不匹配、数据类型不一致等,这些问题在特定情况下才显现出来,例如针对 pose_latent_codes 的特定条目。

排查和解决方案:

  • 检查输入数据:确认数据预处理步骤,确保没有异常值或不合理的数据点进入模型,特别是在索引 0 和 5 的位置。

  • 梯度裁剪:在优化器中使用梯度裁剪技术,限制梯度的大小,防止梯度爆炸。

  • 降低学习率:尝试降低学习率,以减少每一步更新的幅度,使训练更加稳定。

  • 检查正则化项:如果新损失项包含正则化,尝试降低正则化系数,或检查正则化项的实现是否正确。

  • 数值稳定性改进:在损失计算中加入数值稳定性措施,比如避免除以零、使用 log-sum-exp 技巧避免数值下溢等。

  • 代码审查:仔细审查新损失项的实现代码,确保所有操作都是正确的,没有潜在的逻辑错误或数据类型不匹配。

  • 逐层检查梯度:在训练过程中打印各层的梯度,识别梯度异常增大的层,有助于定位问题所在。

通过上述步骤,您可以逐步排查并解决导致特定权重变为 NaN 的问题。在复杂模型中,问题可能不单一,需要综合多个方面的检查和调整。
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/698225.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

34、matlab输入命令汇总

1、ans:最近计算的答案 代码示例1 12ans 3 代码示例2 Brand(7)B 列 1 至 60.7060 0.3171 0.1869 0.6797 0.5853 0.95930.0318 0.9502 0.4898 0.6551 0.2238 0.54720.2769 0.0344 0.4456 0.1626 0.7513 0.13860.0462 0.4387…

比亚迪员工待遇公开:70万员工都是靠真本事拿钱,这里没有大锅饭

比亚迪 近日,车企巨头比亚迪的内部信被曝光。 内部信内容是关于员工待遇的,信中反复强调:比亚迪始终坚持为每一位员工提供公平合理的工作环节和回报机制,鼓励员工工作中展现努力施展自己的才华和价值,来获得更为丰厚的…

AI写作工具:提升工作效率的五大利器

不知道大家有没有发现,随着人工智能技术的快速发展,AI工具正逐渐渗透到我们日常生活的各个方面,极大地提高了我们的工作和学习效率。无论是AI写作、AI绘画、AI思维导图,还是AI幻灯片制作,这些工具已成为我们不可或缺的…

使用 Scapy 库编写 TCP 窗口大小探测攻击脚本

一、介绍 1.1 概述 TCP窗口大小探测攻击是一种信息收集攻击,攻击者通过向目标服务器发送特制的TCP数据包,探测目标服务器的TCP接收窗口大小(TCP Window Size)。了解目标服务器的TCP接收窗口大小,可以帮助攻击者优化后…

70N10-HG010N10L 高压场效应MOS管TO-252封装 散热好 抗雪崩能力强

概述 FSMOSMOSFET基于惠海半导体的器件设计,可实现低功耗RDS(ON)、低栅极电荷、快速切换和优异的雪崩特性。低Vth系列是专门为具有低驱动电压的同步整流系统而优化的。 特征 RDS(ON)和FOM低 低开关损耗 卓越的可靠…

一颗万能的PD协议芯片,能芯Type-C PD协议芯片“ECP5705”, 它是如何实现PD直流风扇应用呢?

文章目录 文章目录 前言 一、PD风扇方案介绍 二、芯片介绍 三、PD风扇-供电方式 四、能芯科技 PD 协议芯片ECP5705-应用场景 总结 前言 随着USB Type-C接口的普及和PD取电芯片的出现,使得小型家电和电动工具可以通过统一的USB Type-C接口进行充电,极大地…

【MySQL】复合查询+表的内外连接

复合查询表的内外连接 1.基本查询回顾2.多表查询3.自连接4.子查询4.1单列子查询4.2多列子查询 5.在from子句中使用子查询6.合并查询7.表的内连和外连7.1内连接7.2外连接7.2.1左外连接 7.2.2右外连接 点赞👍👍收藏🌟🌟关注&#x1…

哪个牌子的充电宝好?有必要买充电宝吗?买充电宝认准这几个牌子

在现代快节奏的生活中,智能手机等电子设备已经成为我们日常生活中不可或缺的一部分。然而,电量不足的困扰时常困扰着我们,特别是在外出时。面对这种情况,共享充电宝成为了不少人的临时解决方案,但其高昂的租赁费用和使…

littlefs性能分析提升

littlefs性能分析 分析的目的很简单:希望支持掉电安全,或者说具有奔溃一致性特性的文件系统,他的读写速度能得到提升。如果了解了瓶颈所在,也可触类旁通。 本次分析,使用了大量的对比测试: littlefs读&a…

带你学习Mybatis之SqlSession

SqlSession是mybatis的核心接口,SqlSessionFactory负责创建SqlSession对象,包含多个openSession()方法的重载。 在SqlSession中定义了常用的数据库操作以及事务操作,接口定义如下 SqlSession public interface SqlSession extends Closeable …

Axios网络请求

网页:Axios中文文档 | Axios中文网Axios 是一个基于 promise 的网络请求库,可以用于浏览器和 node.jshttps://www.axios-http.cn/ 安装命令npm install axios 上一节创建的项目终端安装,安装完成 生命周期函数 App.vue在上述位置加入代码 …

【区块链】深入解析Proof of Work (PoW): 区块链技术的核心驱动力

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 深入解析 Proof of Work (PoW): 区块链技术的核心驱动力引言一、PoW基本概念1.1…

【linux网络(二)】网络基础之套接字编程

💓博主CSDN主页:杭电码农-NEO💓   ⏩专栏分类:Linux从入门到精通⏪   🚚代码仓库:NEO的学习日记🚚   🌹关注我🫵带你学更多操作系统知识   🔝🔝 Linux网络 1. 前言2. 端口号详…

微服务之熔断器

1、高并发带来的问题 在微服务架构中,我们将业务拆分成一个个的服务,服务与服务之间可以相互调用,但是由于网络原因 或者自身的原因,服务并不能保证服务的100%可用,如果单个服务出现问题,调用这个服务就会…

iPhone - 为什么姓名和付款都变成灰色?

问题描述 为什么姓名和付款都变成灰色?点开订阅也显示图 2 的无法连接? 原因分析 联网 WIFI 没有对『设置』开放权限。 解决方案 设置 - 无线局域网 - 使用无线局域网与蜂窝网络的App - 找到『设置』应用 - 勾选『无线局域网与蜂窝数据』

kafka集成spark

1.新建Scala项目 具体教程可见在idea中创建Scala项目教程-CSDN博客 1.1右键项目名-添加框架支持-勾选scala 1.2main目录下新建scala目录-右键Scala目录-将目录标记为-勾选源代码根目录 1.3创建包com.ljr.spark 1.4引入依赖&#xff08;pox.xml) <dependencies><…

3D Web轻量化引擎HOOPS Communicator核心功能特点及应用优势

随着3D技术的发展&#xff0c;越来越多的行业开始在其应用中集成三维模型和可视化技术。特别是在工程、建筑和制造业&#xff0c;3D模型不仅用于设计和展示&#xff0c;还用于分析和优化。然而&#xff0c;传统的3D渲染引擎往往需要高性能的硬件支持&#xff0c;难以在网络环境…

探索GPT-4V在学术领域的应用——无需编程即可阅读和理解科学论文

1. 概述 论文地址&#xff1a;https://arxiv.org/pdf/2312.05468.pdf 随着人工智能潜力的不断扩大&#xff0c;人工智能&#xff08;AI&#xff09;在化学领域的应用也在迅速发展。特别是大规模语言模型的出现&#xff0c;极大地扩展了人工智能在化学研究中的作用。由于这些模…

Vue 路由:一级路由,嵌套路由

1、安装路由插件,因为用的是vue2 所以路由版本要和vue2对应上&#xff0c;所有有3 yarn add vue-router3 2、在main.js里引入 import VueRouter from vue-router Vue.use(VueRouter) 3、新建文件夹 router,创建index.js 4、引入路由插件&#xff0c;并且暴露出来这个路由 5、在…

一文入门vim

先来波快问快答。 第一个问题&#xff0c;vim是什么&#xff1f; vim就是一文本编辑器。 第二个问题&#xff0c;我们为什么要使用vim&#xff1f; 好像在终端中可选择使用的文本编辑器也不多&#xff08;其他有&#xff0c;但是相对而言vim用的比较广泛&#xff09; 第三…