Linux 共享内存mmap,进程通信

文章目录

  • 前言
  • 一、存储映射 I/O
  • 二、mmap, munmap
  • 三、父子进程间 mmap 通信
  • 四、非血缘关系进程间 mmap 提通信
  • 五、mmap 匿名映射区
  • 总结

前言

进程间通信是操作系统中重要的概念之一,使得不同的进程可以相互交换数据和进行协作。其中,共享内存是一种高效的进程间通信机制,而内存映射(mmap)是实现共享内存的一种常见方法。


一、存储映射 I/O

存储映射 I/O 是 一个磁盘文件 与 存储空间中的一个缓冲区相映射。于是, 当从缓冲区中取数据,就相当于读文件中的相应字节。于此类似,将数据存入缓冲区,则相应的字节就自动写入文件。这样, 就可在 不适用 read 和 write 函数的情况下,使用 地址(指针)完成 i/o 操作。

使用这种方法,首先应通知内核,将一个指定文件映射到存储区域中。这个映射工作可以通过 mmap 函数来实现。使用 mmap 系统调用,进程可以直接操作共享内存的指针,而不需要复杂的数据结构和同步机制。
在这里插入图片描述

理解 共享内存
共享内存是一种特殊的内存区域,它可以被多个进程访问和操作。这意味着不同的进程可以直接读取或写入该共享内存区域中的数据。相比于其他进程间通信机制,共享内存具有较低的开销和高效的数据传输速度。


二、mmap, munmap

mmap 用于创建共享内存映射。munmap 用来 释放内存。

 #include <sys/mman.h>

 void *mmap(void *addr, size_t length, int prot, int flags,
           int fd, off_t offset);

 int munmap(void *addr, size_t length);
  1. void * mmap ( void * addr, size_t length , int prot , int flags , int fd , off_t offset ) ;

参数:

  • addr : 指定映射区的首地址。通常传 NULL / 0,表示让系统自动分配。
  • length :共享映射区的大小。
  • prot : 共享映射区的读写属性。
  • flags : 标注共享内存的共享属性。
  • fd :用于创建共享映射区的哪个文件的,文件描述符。
  • offset :

返回值:
在这里插入图片描述

  • 成功 : 映射区的首地址。
  • 失败 : 返回 M AP_FAILED。
  1. int munmap ( void * addr , size_t length ) ;
    在这里插入图片描述

三、父子进程间 mmap 通信

void sys_error(const char *str)
{
	perror(str);		
	exit(1);									// 正常退出程序
}

int var = 10;

int main(void)
{
	int fd;
	char *p;
	pid_t pid;

	fd = open("1.txt", O_RDWR);
	if(fd < 0)
	{
		sys_error("open error");
	}

	ftruncate(fd,100);								// 扩展空间大小
	int len = lseek(fd,0,SEEK_END);
	
	p = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED,fd, 0);		// 创建共享映射区
	if(p == MAP_FAILED)
	{
		sys_error("map error!");
	}
	close(fd);

	pid = fork();								 // 创建子进程
	if(pid == 0)
	{
		strcpy(p,"This is child");
		var = 100;
		printf("%s, Child: var = %d\n",p, var);
	}
	else
	{
		sleep(1);
		printf("Parent: %s,var = %d\n",p,var);
	}

	wait(NULL);											// 回收子进程
	munmap(p, len);										// 释放映射区

	return 0;
}

在这里插入图片描述
var 是 全局变量,父子进程操作 全局变量时,读数据时 共享; 写数据时 复制。
上述代码中,子进程写数据时,是复制一份数据 后 对复制的数据进程修改。父进程 读数据时,全局变量还是原本的数值。

四、非血缘关系进程间 mmap 提通信

1.c 不断写数据:

void sys_error(const char *str)
{
	perror(str);		
	exit(1);
}

int main(void)
{
	int fd;
	char *p;
	int i = 0;

	fd = open("1.txt", O_RDWR);
	if(fd < 0)
	{
		sys_error("open error");
	}

	ftruncate(fd,100);
	int len = lseek(fd,0,SEEK_END);
	
	p = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED,fd, 0);
	if(p == MAP_FAILED)
	{
		sys_error("map error!");
	}
	close(fd);
	
	while(1)
	{
		sleep(1);
		*p = i;								// 不断写入数据
		i++;
	}
	
	munmap(p, len);
	return 0;
}

2.c 不断读数据

void sys_error(const char *str)
{
	perror(str);		
	exit(1);
}

int main(void)
{
	int fd;
	char *p;
	int i = 0;

	fd = open("1.txt", O_RDWR);
	if(fd < 0)
	{
		sys_error("open error");
	}

	ftruncate(fd,100);
	int len = lseek(fd,0,SEEK_END);
	
	p = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED,fd, 0);
	if(p == MAP_FAILED)
	{
		sys_error("map error!");
	}
	close(fd);
	
	while(1)
	{
		sleep(1);
		printf("*p = %d\n",*p);				// 不断读数据
	}
	
	munmap(p, len);
	return 0;
}

在这里插入图片描述

五、mmap 匿名映射区

mmap 匿名映射区是在进程的虚拟内存空间中创建的一段没有对应物理文件的内存区域。它通常用于进程间通信和临时存储数据,不需要使用文件作为映射源。匿名映射区在 Linux 系统中非常常见。

在使用mmap系统调用创建匿名映射区时,传递给mmap函数的文件描述符参数(通常为-1)表明不会有一个与之相关联的文件。
mmap 函数的 参数二,可以为指定的大小。参数四 为 MAP_SHARED|MAP_ANONYMOUS

void sys_error(const char *str)
{
	perror(str);		
	exit(1);									// 正常退出程序
}

int var = 10;

int main(void)
{
	char *p;
	pid_t pid;

	p = mmap(NULL, 20, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANONYMOUS, -1, 0);		// 创建共享映射区
	if(p == MAP_FAILED)
	{
		sys_error("map error!");
	}

	pid = fork();								 // 创建子进程
	if(pid == 0)
	{
		strcpy(p,"This is child");
		var = 100;
		printf("%s, Child: var = %d\n",p, var);
	}
	else
	{
		sleep(1);
		printf("Parent: %s,var = %d\n",p,var);
	}

	wait(NULL);											// 回收子进程
	munmap(p, 20);										// 释放映射区
	return 0;
}

总结

进程间共享内存映射(mmap)通信是一种高效、灵活的进程间通信机制。通过内存映射,不同的进程可以共享相同的数据区域,提高数据访问速度和性能。然而,在使用该机制时需要注意同步机制、内存管理和安全性等问题,以确保共享数据的正确性和安全性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/69706.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

安达发|企业如何提高生产实现精细化管理

随着市场竞争的加剧&#xff0c;企业如何提高生产效率和降低成本成为了关键。本文将探讨生产计划排程表的制定方法&#xff0c;帮助企业实现精细化管理&#xff0c;提升竞争力。 在传统的生产管理中&#xff0c;企业往往依赖于人工经验和直觉来制定生产计划&#xff0c;导致生产…

刷题笔记 day9

1658 将 x 减到 0 的最小操作数 解析&#xff1a;1. 当数组的两端的数都大于x时&#xff0c;直接返回 -1。 2. 当数组所有数之和小于 x 时 &#xff0c;直接返回 -1。 3. 数组中可以将 x 消除为0&#xff0c;那么可以从左边减小为 0 &#xff1b;可以从右边减小为 0 &#xff1…

深眸科技|发现AI+3D视觉的价值,技术升级加速视觉应用产品国产替代

随着中国工业化进程的不断深入和智能制造浪潮的影响&#xff0c;工业生产对于机器视觉技术的需求不断攀升&#xff0c;其应用范围覆盖了工业领域的众多行业&#xff0c;包括3C电子、汽车、半导体、新能源、物流等。 据GGII发布的最新数据显示&#xff0c;近年来我国机器视觉市…

数据结构篇七:排序

文章目录 前言1.插入排序1.1 基本思想1.2 代码实现1.3 特性总结 2.希尔排序2.1 基本思想2.2 代码实现2.3 特性总结 3. 选择排序3.1 基本思想3.2 代码实现3.3 特性总结 4. 堆排序4.1 基本思想4.2 代码实现4.3 特性总结 5. 冒泡排序5.1 基本思想5.2 代码实现5.3 特性总结 6. 快速…

机器学习笔记之优化算法(十三)关于二次上界引理

机器学习笔记之优化算法——关于二次上界引理 引言回顾&#xff1a;利普希兹连续梯度下降法介绍 二次上界引理&#xff1a;介绍与作用二次上界与最优步长之间的关系二次上界引理证明过程 引言 本节将介绍二次上界的具体作用以及它的证明过程。 回顾&#xff1a; 利普希兹连续…

【Java】智慧工地云平台源码-支持私有化部署+硬件设备

智慧工地硬件设备包括&#xff1a;AI识别一体机、智能广播音响、标养箱、塔机黑匣子、升降机黑匣子、吊钩追踪控制设备、扬尘监测设备、喷淋设备。 1.什么是AI危险源识别 AI危险源识别是指基于智能视频分析技术&#xff0c;对视频图像信息进行自动分析识别&#xff0c;以实时监…

AI一键生成数字人

AI一键生成数字人,不玩虚的 阅读时长&#xff1a;10分钟 本文内容&#xff1a; 结合开源AI&#xff0c;一键生成短视频发布到常见的某音&#xff0c;某手平台&#xff0c;狠狠赚一笔 前置知识&#xff1a; 基本的 python 编程知识Jupyter Notebook 使用过Linux 使用过 先上源码…

OCP China Day 2023:五大社区齐聚,加速开源开放创新与落地

8月10日&#xff0c;2023年开放计算中国社区技术峰会&#xff08;OCP China Day 2023&#xff09;在北京举行。智慧时代&#xff0c;计算多元化、应用多样化、技术复杂化正驱动数据中心新一轮变革&#xff0c;开源开放社区已成为推动数据中心持续创新的重要力量&#xff0c;通过…

激光切割机的操作中蛙跳技术是什么意思

其实&#xff0c;蛙跳技术就是指在激光切割机运行的过程中&#xff0c;机器换位置的方式。打个比方&#xff0c;你刚刚在这儿把孔1切好了&#xff0c;接下来就得跑到那儿把孔2切了。 在这个过程中&#xff0c;激光切割机就像是一只青蛙&#xff0c;要从一个位置跳到另一个位置。…

Flink源码之RPC

Flink是一个典型的Master/Slave分布式实时处理系统&#xff0c;分布式系统组件之间必然涉及通信&#xff0c;也即RPC&#xff0c;以下图展示Flink组件之间的关系&#xff1a; RPCGateWay 一般RPC框架可根据用户业务类生成客户端和服务器端通信底层代码&#xff0c;此时只需定…

Unity游戏源码分享-植物大战僵尸素材与源码

Unity游戏源码分享-植物大战僵尸素材与源码 完整版本下载地址&#xff1a; https://download.csdn.net/download/Highning0007/88191862

Spring kafka源码分析——消息是如何消费的

文章目录 概要端点注册创建监听容器启动监听容器消息拉取与消费小结 概要 本文主要从Spring Kafka的源码来分析&#xff0c;消费端消费流程&#xff1b;从spring容器启动到消息被拉取下来&#xff0c;再到执行客户端自定义的消费逻辑&#xff0c;大致概括为以下4个部分&#x…

无涯教程-Perl - glob函数

描述 此函数返回与EXPR匹配的文件的列表,这些文件将由标准Bourne shell进行扩展。如果EXPR未指定路径,请使用当前目录。如果省略EXPR,则使用$_的值。 从Perl 5.6开始,扩展是在内部完成的,而不是使用外部脚本。扩展遵循csh(以及任何派生形式,包括tcsh和bash)的扩展方式,其翻译…

Linux 发行版 Debian 12.1 发布

导读在今年 6 月初&#xff0c;Debian 12“bookworm”发布&#xff0c;而日前 Debian 迎来了 12.1 版本&#xff0c;主要修复系统用户创建等多个安全问题。 Debian 是最古老的 GNU / Linux 发行版之一&#xff0c;也是许多其他基于 Linux 的操作系统的基础&#xff0c;包括 Ub…

Docker安装 elasticsearch-head

目录 前言安装elasticsearch-head步骤1&#xff1a;准备1. 安装docker2. 搜索可以使用的镜像。3. 也可从docker hub上搜索镜像。4. 选择合适的redis镜像。 步骤2&#xff1a;拉取elasticsearch-head镜像拉取镜像查看已拉取的镜像 步骤3&#xff1a;创建容器创建容器方式1&#…

【C++标准模板库STL】map, unordered_map, set, unordered_set简介与常用函数

文章目录 map是STL中的标准容器&#xff0c;以键值对的形式存储&#xff0c;即为哈希表&#xff0c;并且是有序的unordered_map也是表示哈希表的容器&#xff0c;但是没有顺序&#xff0c;unordered_map查询单个key的时候效率比map高&#xff0c;但是要查询某一范围内的key值时…

在vue3+vite项目中使用jsx语法

如果我掏出下图&#xff0c;阁下除了私信我加入学习群&#xff0c;还能如何应对&#xff1f; 正文开始 前言一、下载资源二、利用vite工具引入babel插件总结 前言 最近在为部署人员开发辅助部署的工具&#xff0c;技术栈是vue3viteelectron&#xff0c;在使用jsx语法时&#x…

Oracle 知识篇+会话级全局临时表在不同连接模式中的表现

标签&#xff1a;会话级临时表、全局临时表、幻读释义&#xff1a;Oracle 全局临时表又叫GTT ★ 结论 ✔ 专用服务器模式&#xff1a;不同应用会话只能访问自己的数据 ✔ 共享服务器模式&#xff1a;不同应用会话只能访问自己的数据 ✔ 数据库驻留连接池模式&#xff1a;不同应…

k8s学习day03

第五章 Pod详解 本章节将详细介绍Pod资源的各种配置&#xff08;yaml&#xff09;和原理。 Pod介绍 Pod结构 每个Pod中都可以包含一个或者多个容器&#xff0c;这些容器可以分为两类&#xff1a; 用户程序所在的容器&#xff0c;数量可多可少 Pause容器&#xff0c;这是每个…

模型训练----将日志输出为txt

1、写入txt 在云服务器上训练模型的时候&#xff0c;防止不显示输出&#xff0c;可以将训练日志写入txt import logging#初始化文件&#xff0c;filemodew每次覆盖文件 logging.basicConfig(filename./log.txt,format %(asctime)s - %(name)s - %(levelname)s - %(message)s-…