Python 全栈体系【四阶】(五十八)

第五章 深度学习

十三、自然语言处理(NLP)

3. 文本表示

3.1 One-hot

One-hot(独热)编码是一种最简单的文本表示方式。如果有一个大小为V的词表,对于第i个词 w i w_i wi,可以用一个长度为V的向量来表示,其中第i个元素为1,其它为0.例如:

减肥:[1, 0, 0, 0, 0]
瘦身:[0, 1, 0, 0, 0]
增重:[0, 0, 1, 0, 0]

One-hot词向量构建简单,但也存在明显的弱点:

  • 维度过高。如果词数量较多,每个词需要使用更长的向量表示,造成维度灾难;
  • 稀疏矩阵。每个词向量,其中只有一位为1,其它位均为零;
  • 语义鸿沟。词语之间的相似度、相关程度无法度量。
3.2 词袋模型

词袋模型(Bag-of-words model,BOW),BOW模型假定对于一个文档,忽略它的单词顺序和语法、句法等要素,将其仅仅看作是若干个词汇的集合,文档中每个单词的出现都是独立的,不依赖于其它单词是否出现。例如:

我把他揍了一顿,揍得鼻青眼肿
他把我走了一顿,揍得鼻青眼肿

构建一个词典:

{"我":0, "把":1, "他":2, "揍":3, "了":4 "一顿":5, "鼻青眼肿":6, "得":7}

再将句子向量化,维数和字典大小一致,第i维上的数值代表ID为i的词在句子里出现的频次,两个句子可以表示为:

[1, 1, 1, 2, 1, 1, 1, 1]
[1, 1, 1, 2, 1, 1, 1, 1]

词袋模型表示简单,但也存在较为明显的缺点:

  • 丢失了顺序和语义。顺序是极其重要的语义信息,词袋模型只统计词语出现的频率,忽略了词语的顺序。例如上述两个句子意思相反,但词袋模型表示却完全一致;
  • 高维度和稀疏性。当语料增加时,词袋模型维度也会增加,需要更长的向量来表示。但大多数词语不会出现在一个文本中,所以导致矩阵稀疏。
3.3 TF-IDF

TF-IDF(Term Frequency-Inverse Document Frequency,词频-逆文档频率)是一种基于传统的统计计算方法,常用于评估一个文档集中一个词对某份文档的重要程度。其基本思想是:一个词语在文档中出现的次数越多、出现的文档越少,语义贡献度越大(对文档区分能力越强)。其表达式为:

T F − I D F = T F i j × I D F i = n j i ∑ k n k j × l o g ( ∣ D ∣ ∣ D i ∣ + 1 ) TF-IDF = TF_{ij} \times IDF_i =\frac{n_{ji}}{\sum_k n_{kj}} \times log(\frac{|D|}{|D_i| + 1}) TFIDF=TFij×IDFi=knkjnji×log(Di+1D)

该指标依然无法保留词语在文本中的位置关系。该指标前面有过详细讨论,此处不再赘述。

3.4 共现矩阵

共现(co-occurrence)矩阵指通过统计一个事先指定大小的窗口内的词语共现次数,以词语周边的共现词的次数做为当前词语的向量。具体来说,我们通过从大量的语料文本中构建一个共现矩阵来表示词语。例如,有语料如下:

I like deep learning.
I like NLP.
I enjoy flying.

则共现矩阵表示为:

在这里插入图片描述

矩阵定义的词向量在一定程度上缓解了one-hot向量相似度为0的问题,但没有解决数据稀疏性和维度灾难的问题。

3.5 N-Gram表示

N-Gram模型是一种基于统计语言模型,语言模型是一个基于概率的判别模型,它的输入是个句子(由词构成的顺序序列),输出是这句话的概率,即这些单词的联合概率。

N-Gram本身也指一个由N个单词组成的集合,各单词具有先后顺序,且不要求单词之间互不相同。常用的有Bi-gram(N=2)和Tri-gram(N=3)。例如:

句子:L love deep learning

Bi-gram: {I, love}, {love, deep}, {deep, learning}

Tri-gram: {I, love, deep}, {love deep learning}

N-Gram基本思想是将文本里面的内容按照字节进行大小为n的滑动窗口操作,形成了长度是n的字节片段序列。每一个字节片段称为一个gram,对所有gram的出现频度进行统计,并按照事先设置好的频度阈值进行过滤,形成关键gram列表,也就是这个文本向量的特征空间,列表中的每一种gram就是一个特征向量维度。

3.6 词嵌入
3.6.1 什么是词嵌入

词嵌入(word embedding)是一种词的向量化表示方式,该方法将词语映射为一个实数向量,同时保留词语之间语义的相似性和相关性。例如:

ManWomenKingQueenAppleOrange
Gender-11-0.950.970.000.01
Royal0.010.020.930.95-0.010.00
Age0.030.020.700.690.03-0.02
Food0.090.010.020.010.950.97

我们用一个四维向量来表示man,Women,King,Queen,Apple,Orange等词语(在实际中使用更高维度的表示,例如100~300维),这些向量能进行语义的表示和计算。例如,用Man的向量减去Woman的向量值:

e m a n − e w o m a n = [ − 1 0.01 0.03 0.09 ] − [ 1 0.02 0.02 0.01 ] = [ − 2 − 0.01 0.01 0.08 ] ≈ [ − 2 0 0 0 ] e_{man} - e_{woman} = \left[ \begin{matrix} -1 \\ 0.01 \\ 0.03 \\ 0.09 \\ \end{matrix} \right] -\left[ \begin{matrix} 1 \\ 0.02 \\ 0.02 \\ 0.01 \\ \end{matrix} \right] = \left[ \begin{matrix} -2 \\ -0.01 \\ 0.01 \\ 0.08 \\ \end{matrix} \right] \approx \left[ \begin{matrix} -2 \\ 0 \\ 0 \\ 0 \\ \end{matrix} \right] emanewoman= 10.010.030.09 10.020.020.01 = 20.010.010.08 2000

类似地,如果用King的向量减去Queen的向量,得到相似的结果:

e m a n − e w o m a n = [ − 0.95 0.93 0.70 0.02 ] − [ 0.97 0.85 0.69 0.01 ] = [ − 1.92 − 0.02 0.01 0.01 ] ≈ [ − 2 0 0 0 ] e_{man} - e_{woman} = \left[ \begin{matrix} -0.95 \\ 0.93 \\ 0.70 \\ 0.02 \\ \end{matrix} \right] -\left[ \begin{matrix} 0.97 \\ 0.85 \\ 0.69 \\ 0.01 \\ \end{matrix} \right] = \left[ \begin{matrix} -1.92 \\ -0.02 \\ 0.01 \\ 0.01 \\ \end{matrix} \right] \approx \left[ \begin{matrix} -2 \\ 0 \\ 0 \\ 0 \\ \end{matrix} \right] emanewoman= 0.950.930.700.02 0.970.850.690.01 = 1.920.020.010.01 2000

我们可以通过某种降维算法,将向量映射到低纬度空间中,相似的词语位置较近,不相似的词语位置较远,这样能帮助我们更直观理解词嵌入对语义的表示。如下图所示:

在这里插入图片描述

实际任务中,词汇量较大,表示维度较高,因此,我们不能手动为大型文本语料库开发词向量,而需要设计一种方法来使用一些机器学习算法(例如,神经网络)自动找到好的词嵌入,以便有效地执行这项繁重的任务。

3.6.2 词嵌入的优点
  • 特征稠密;
  • 能够表征词与词之间的相似度;
  • 泛化能力更好,支持语义计算。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/696998.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[C++数据结构之看懂就这一篇]图(上)

📚博客主页:Zhui_Yi_🔍:上期回顾:JAVA面向对象(上)❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更新的动力❤️🎇追当今朝…

C++面向对象程序设计 - 输入输出流进一步研究

在C中&#xff0c;输入输出流&#xff08;I/O&#xff09;是一个强大的特性&#xff0c;它允许程序与各种输入/输出设备&#xff08;如键盘、显示器、文件等&#xff09;进行交互。C标准库中的<iostream>头文件定义了基本的输入输出流类&#xff0c;如std::cin&#xff0…

从河流到空气,BL340工控机助力全面环保监测网络构建

在环保监测领域&#xff0c;智能化、高效率的监测手段正逐步成为守护绿水青山的新常态。其中&#xff0c;ARMxy工业计算机BL340凭借其强大的处理能力、高度的灵活性以及广泛的兼容性&#xff0c;在水质监测站、空气质量检测、噪音污染监控等多个环保应用场景中脱颖而出&#xf…

Apache ShardingSphere实战与核心源码剖析

Apache ShardingSphere实战与核心源码剖析 1.数据库架构演变与分库分表介绍 1.1 海量数据存储问题及解决方案 如今随着互联网的发展,数据的量级也是成指数的增长,从GB到TB到PB。对数据的各种操作也是愈加的困难,传统的关系性数据库已经无法满足快速查询与插入数据的需求。…

常见的api:BigDecima

一.计算中的小数 float和double占有的位置是有限的 二.BigDecima的作用 1.用于小数的精确计算 2.用来表示很大的小数 三.使用(传入小数) BigDecimal b1 new BigDecimal(0.01);BigDecimal b2 new BigDecimal(0.09);System.out.println(b1);System.out.println(b2); 不精确&…

creo学习一

设置好当前配置后&#xff0c;导出config配置文件&#xff0c;并覆盖掉此路径下的旧文件&#xff0c;使得新配置永久生效&#xff0c;这样每次打开软件都是新配置的设置&#xff1a; 系统颜色的导出&#xff1a; 打开版本的问题&#xff1a; 不能有弱尺寸&#xff1a; 注意&a…

搭建vauditdemo靶场mysql为NO问题

一、问题 在搭建vauditdemo时&#xff0c;遇到如下显示问题&#xff1a; mysql版本检测为NO 二、解决 查找该方面问题时&#xff0c;并没有找到解决方法 然后换mysql版本换了五六个也没有解决问题 问了AI后给的答复有一条为将mysql改为mysqli 修改保存后解决问题 步骤如…

280 基于matlab的摇号系统GUI界面仿真MATLAB程序

基于matlab的摇号系统GUI界面仿真MATLAB程序&#xff0c;输入总数量及摇号需求&#xff0c;进行随机性摇号&#xff0c;并对摇取的号码进行双重随机性数据检测&#xff0c;确定是否符合要求。程序已调通&#xff0c;可直接运行。 280 GUI人机交互 摇号系统GUI界面仿真 - 小红书…

RocketMq详解:二、SpringBoot集成RocketMq

在上一章中我们对Rocket的基础知识、特性以及四大核心组件进行了详细的介绍&#xff0c;本章带着大家一起去在项目中具体的进行应用&#xff0c;并设计将其作为一个工具包只提供消息的分发服务和业务模块进行解耦 在进行本章的学习之前&#xff0c;需要确保你的可以正常启动和…

cnvd_2015_07557-redis未授权访问rce漏洞复现-vulfocus复现

1.复现环境与工具 环境是在vulfocus上面 工具&#xff1a;GitHub - vulhub/redis-rogue-getshell: redis 4.x/5.x master/slave getshell module 参考攻击使用方式与原理&#xff1a;https://vulhub.org/#/environments/redis/4-unacc/ 2.复现 需要一个外网的服务器做&…

Docker Swarm持久化

Docker Swarm持久化 1 简介 Docker Swarm持久化有bind、volume和NFS三种方式&#xff0c;bind和volume两种方式适合挂载单个宿主机&#xff0c;不适合集群&#xff1b;NFS适合集群服务&#xff0c;但需要安装NFS系统。 注意&#xff1a;Docker Swarm需要先安装集群。 由Doc…

AI作画工具介绍

目录 1.概述 2.Stable Diffusion 2.1.诞生背景 2.2.版本历史 2.3.优点 2.4.缺点 2.5.应用场景 2.6.未来展望 3.Midjourney 3.1.诞生背景 3.2.版本历史 3.3.优点 3.4.缺点 3.5.应用场景 3.6.未来展望 4.总结 1.概述 AI作画工具是一种运用人工智能技术&#xff…

JAVA网络编程,反射及注解知识总结

文章目录 网络编程软件架构三要素IP端口号协议UDP协议发送数据接收数据三种通信方式 TCP协议客户端服务器端三次握手四次挥手 反射获取字节码文件获取构造方法获取成员变量获取成员方法反射的作用 动态代理注解作用格式使用位置注解的原理常见注解元注解自定义注解解析注解 网络…

【OC】类与对象

类与对象 定义类接口部分定义成员变量方法说明实现部分 对象的产生与使用对象与指针self关键字避免重复创建 id类型方法详解方法的所属性形参个数可变的方法 成员变量成员变量及其运行机制多个实例中内存示意图模拟类变量单例模式 类是面向对象的重要内容&#xff0c;我们可以把…

【问题解决】adb remount 失败或刷机无法连接设备(KaiOS)

问题描述 1、设备无法adb remount成功&#xff0c; 2、通过fastboot无法识别设备&#xff0c;一直卡住 3、已经识别到9008端口&#xff0c;但是设备与刷机工具connect fail&#xff0c;甚至软件crash 解决方案 1、安装高通驱动工具&#xff1a;QDLoder HS-USB Driver QDLoade…

【工作必备知识】Linux磁盘I/O故障排查分析定位 iostat 介绍

【工作必备知识】Linux磁盘I/O故障排查分析定位 iostat 介绍 大家好&#xff0c;我是秋意零。 前言&#xff1a;今天&#xff0c;介绍Linux磁盘I/O故障排查时&#xff0c;必备命令iostat。该命令是监视系统I/O设备使用负载&#xff0c;它可以实时监视IO设备&#xff0c;从而帮…

Python数据分析II

目录 1.HS-排序返回前n行 2.HS-相关性 3.缺失值处理 4.时间 5.时间索引 6.分组聚合 7.离散分箱 8.Concat关联(索引关联) 9.Merge关联(字段关联) 10.join合并(左字段,右索引) 11.行列转置及透视表 12.数据可视化-面向过程 13.数据可视化-面向对象 14.快速生成柱状…

10秒钟docker 安装Acunetix

1、拉取镜像&#xff1a; 2、查看镜像&#xff1a; [rootdns-server ~]# docker images REPOSITORY TAG IMAGE ID CREATED SIZE quay.io/hiepnv/acunetix latest f8415551b8f4 2 months ago 1.98GB 3、运行镜像&#xff1a; …

msfconsole利用Windows server2008cve-2019-0708漏洞入侵

一、环境搭建 Windows系列cve-2019-0708漏洞存在于Windows系统的Remote Desktop Services&#xff08;远程桌面服务&#xff09;&#xff08;端口3389&#xff09;中&#xff0c;未经身份验证的攻击者可以通过发送特殊构造的数据包触发漏洞&#xff0c;可能导致远程无需用户验…

已解决Error || IndexError: index 3 is out of bounds for axis 0 with size 3

已解决Error || IndexError: index 3 is out of bounds for axis 0 with size 3 原创作者&#xff1a; 猫头虎 作者微信号&#xff1a; Libin9iOak 作者公众号&#xff1a; 猫头虎技术团队 更新日期&#xff1a; 2024年6月6日 博主猫头虎的技术世界 &#x1f31f; 欢迎来…