C51学习归纳9 --- I2C通讯学习(重点)

        首先,我自己学习过以后的直观感觉,通信协议是单片机的灵魂之一,只有规定好了通信协议我们才能够正确的接收到信息,才能实现更加深入的研究。所以这一部分是需要好好学习的。

        本节借助一个可存储的芯片AT24C02,进行在I2C协议上的读取,实现掉电不丢失,永久存储数据并读取的工作。

一、I2C通信协议原理

        24C02的通讯方式是I2C,所以这个芯片端口的连接直接按照I2C所需直接预留出来。WE是写入使能,即可以存储内容。P2_1,2是控制我们写入时机,和内容的控制端口。后续讲完I2C通讯流程,大家应该就懂了。E0~2直接接地,是I2C的地址。

        上图是I2C通信协议开始和结束的信号标志。

        开始标志:在SCL高电平的时候,将数据线SDA下拉,从高电平到低电平。随后SCL拉低       

        结束标志:在SCL高电平的时候,将数据线SDA上拉,从低电平到高电平。 SCL提前拉高

         在收到开始信号以后,我们就可以发送数据了,现在讲数据怎么发送的。

        开始信号后,SCL=0,SDA=0。在SCL=0的期间,我们将数据放在SDA上,在下一次SCL=1时,从机读取数据。

       在讲数据怎么接收的。

       开始前SCL=0,SDA=0。在SCL=0的期间,从机将数据放在SDA上,在下一次SCL=1时,主机读取刚才SDA写入的数据。注意,这里需要主机释放SDA线。

         这一步其实是为了,确定从机是否接受,和确定从机是否发送完毕。保证系统通信的连贯和正确。        

         主机发送开始位,然后发送从机地址和设置为写模式,随后监听从机的接收应答,如果接收了,返回RA信号。然后主机开始发送数据,从机应答,以此往复,直到最后主机发送结束位。本次通信结束。

        地址,前四位是厂家定的,加下来三位由电路板的连接确定,电路板全部连地,所以就是000.最后一位是1为读,0为写。

         主机发送开始位,然后发送从机地址和设置为读模式,随后监听从机的接收应答,如果接收了,返回RA信号。然后从机开始发送数据,从机发送发送应答,以此往复,最后遇到SA=1时主机发送结束位。本次通信结束。

         这个就是将前两个组合起来,发送尾部去掉停止信号,直接加上接受操作。

         这里就是在指定位置写入、读取。

二、利用AT24C02 进行数据存储和读取

        那么我们要借助I2C通信,我们就要写I2C的底层函数。

#include <REGX52.H>

sbit I2C_SCL=P2^1;
sbit I2C_SDA=P2^0;

/**
  * @brief  I2C开始
  * @param  无
  * @retval 无
  */
void I2C_Start(void)
{
	I2C_SDA=1;
	I2C_SCL=1;
	I2C_SDA=0;
	I2C_SCL=0;
}

/**
  * @brief  I2C停止
  * @param  无
  * @retval 无
  */
void I2C_Stop(void)
{
	I2C_SDA=0;
	I2C_SCL=1;
	I2C_SDA=1;
}

/**
  * @brief  I2C发送一个字节
  * @param  Byte 要发送的字节
  * @retval 无
  */
void I2C_SendByte(unsigned char Byte)
{
	unsigned char i;
	for(i=0;i<8;i++)
	{
		I2C_SDA=Byte&(0x80>>i);
		I2C_SCL=1;
		I2C_SCL=0;
	}
}

/**
  * @brief  I2C接收一个字节
  * @param  无
  * @retval 接收到的一个字节数据
  */
unsigned char I2C_ReceiveByte(void)
{
	unsigned char i,Byte=0x00;
	I2C_SDA=1;
	for(i=0;i<8;i++)
	{
		I2C_SCL=1;
		if(I2C_SDA){Byte|=(0x80>>i);}
		I2C_SCL=0;
	}
	return Byte;
}

/**
  * @brief  I2C发送应答
  * @param  AckBit 应答位,0为应答,1为非应答
  * @retval 无
  */
void I2C_SendAck(unsigned char AckBit)
{
	I2C_SDA=AckBit;
	I2C_SCL=1;
	I2C_SCL=0;
}

/**
  * @brief  I2C接收应答位
  * @param  无
  * @retval 接收到的应答位,0为应答,1为非应答
  */
unsigned char I2C_ReceiveAck(void)
{
	unsigned char AckBit;
	I2C_SDA=1;
	I2C_SCL=1;
	AckBit=I2C_SDA;
	I2C_SCL=0;
	return AckBit;
}

        这一段代码看着很长,但是你如果只看大的模块,其实我们就是把刚才的开启、停止、发送、接收、发送应答、接收应答的时序逻辑表示出来了而已 。这些就是I2C的通信协议

#include <REGX52.H>
#include "I2C.h"

#define AT24C02_ADDRESS		0xA0

/**
  * @brief  AT24C02写入一个字节
  * @param  WordAddress 要写入字节的地址
  * @param  Data 要写入的数据
  * @retval 无
  */
void AT24C02_WriteByte(unsigned char WordAddress,Data)
{
	I2C_Start();
	I2C_SendByte(AT24C02_ADDRESS);
	I2C_ReceiveAck();
	I2C_SendByte(WordAddress);
	I2C_ReceiveAck();
	I2C_SendByte(Data);
	I2C_ReceiveAck();
	I2C_Stop();
}

/**
  * @brief  AT24C02读取一个字节
  * @param  WordAddress 要读出字节的地址
  * @retval 读出的数据
  */
unsigned char AT24C02_ReadByte(unsigned char WordAddress)
{
	unsigned char Data;
	I2C_Start();
	I2C_SendByte(AT24C02_ADDRESS);
	I2C_ReceiveAck();
	I2C_SendByte(WordAddress);
	I2C_ReceiveAck();
	I2C_Start();
	I2C_SendByte(AT24C02_ADDRESS|0x01);
	I2C_ReceiveAck();
	Data=I2C_ReceiveByte();
	I2C_SendAck(1);
	I2C_Stop();
	return Data;
}

         有了I2C的通信协议之后,我们的AT24C02就可以借助I2C的通信格式,编写自己的读写功能。这个也是刚才的逻辑图。

#include <REGX52.H>
#include "LCD1602.h"
#include "Key.h"
#include "AT24C02.h"
#include "Delay.h"

unsigned char KeyNum;
unsigned int Num;

void main()
{
	LCD_Init();
	LCD_ShowNum(1,1,Num,5);
	while(1)
	{
		KeyNum=Key();
		if(KeyNum==1)	//K1按键,Num自增
		{
			Num++;
			LCD_ShowNum(1,1,Num,5);
		}
		if(KeyNum==2)	//K2按键,Num自减
		{
			Num--;
			LCD_ShowNum(1,1,Num,5);
		}
		if(KeyNum==3)	//K3按键,向AT24C02写入数据
		{
			AT24C02_WriteByte(0,Num%256);
			Delay(5);
			AT24C02_WriteByte(1,Num/256);
			Delay(5);
			LCD_ShowString(2,1,"Write OK");
			Delay(1000);
			LCD_ShowString(2,1,"        ");
		}
		if(KeyNum==4)	//K4按键,从AT24C02读取数据
		{
			Num=AT24C02_ReadByte(0);
			Num|=AT24C02_ReadByte(1)<<8;
			LCD_ShowNum(1,1,Num,5);
			LCD_ShowString(2,1,"Read OK ");
			Delay(1000);
			LCD_ShowString(2,1,"        ");
		}
	}
}

        编写了底层的代码之后,我们在主函数里只需要,直接调用就好了。

三、利用定时器实现秒表

        之前也实现了类似的功能,但是以前按键按下以后是阻塞的,不利于芯片的运行,现在使用定时器对按键扫描,克服以前的不足。

#include <REGX52.H>
#include "Timer0.h"
#include "Key.h"
#include "Nixie.h"
#include "Delay.h"
#include "AT24C02.h"

unsigned char KeyNum;
unsigned char Min,Sec,MiniSec;
unsigned char RunFlag;

void main()
{
	Timer0_Init();
	while(1)
	{
		KeyNum=Key();
		if(KeyNum==1)			//K1按键按下
		{
			RunFlag=!RunFlag;	//启动标志位翻转
		}
		if(KeyNum==2)			//K2按键按下
		{
			Min=0;				//分秒清0
			Sec=0;
			MiniSec=0;
		}
		if(KeyNum==3)			//K3按键按下
		{
			AT24C02_WriteByte(0,Min);	//将分秒写入AT24C02
			Delay(5);
			AT24C02_WriteByte(1,Sec);
			Delay(5);
			AT24C02_WriteByte(2,MiniSec);
			Delay(5);
		}
		if(KeyNum==4)			//K4按键按下
		{
			Min=AT24C02_ReadByte(0);	//读出AT24C02数据
			Sec=AT24C02_ReadByte(1);
			MiniSec=AT24C02_ReadByte(2);
		}
		Nixie_SetBuf(1,Min/10);	//设置显示缓存,显示数据
		Nixie_SetBuf(2,Min%10);
		Nixie_SetBuf(3,11);
		Nixie_SetBuf(4,Sec/10);
		Nixie_SetBuf(5,Sec%10);
		Nixie_SetBuf(6,11);
		Nixie_SetBuf(7,MiniSec/10);
		Nixie_SetBuf(8,MiniSec%10);
	}
}

/**
  * @brief  秒表驱动函数,在中断中调用
  * @param  无
  * @retval 无
  */
void Sec_Loop(void)
{
	if(RunFlag)
	{
		MiniSec++;
		if(MiniSec>=100)
		{
			MiniSec=0;
			Sec++;
			if(Sec>=60)
			{
				Sec=0;
				Min++;
				if(Min>=60)
				{
					Min=0;
				}
			}
		}
	}
}

void Timer0_Routine() interrupt 1
{
	static unsigned int T0Count1,T0Count2,T0Count3;
	TL0 = 0x18;		//设置定时初值
	TH0 = 0xFC;		//设置定时初值
	T0Count1++;
	if(T0Count1>=20)
	{
		T0Count1=0;
		Key_Loop();	//20ms调用一次按键驱动函数
	}
	T0Count2++;
	if(T0Count2>=2)
	{
		T0Count2=0;
		Nixie_Loop();//2ms调用一次数码管驱动函数
	}
	T0Count3++;
	if(T0Count3>=10)
	{
		T0Count3=0;
		Sec_Loop();	//10ms调用一次数秒表驱动函数
	}
}

        我们先看主要的逻辑,中断中,1、每次产生中断都要重新赋值;2、我们每20ms对独立按键进行扫描,判断当下的按键值;3、每2ms对数码管进行顺序刷新显示;4、每10ms,因为我们的毫秒只显示2位,所以我们每10ms显示依次新的毫秒数字,并并进位。

        讲完了中断,我们关注一下主函数的内容,每当我们扫描得到了键码值以后,我们针对不同的键码值做不同的工作。按键一:修改计时器开始。按键二:数据清理。按键三:写入。案件四:从芯片读出,显示在数码表。

        随后讲一下优势:

        1、使用定时器,避免了延时函数占用CPU,从而提高效率。

        2、使用定时器,定时扫描数码管,显示效果更好

void Nixie_Scan(unsigned char Location,Number)
{
	P0=0x00;				//段码清0,消影
	switch(Location)		//位码输出
	{
		case 1:P2_4=1;P2_3=1;P2_2=1;break;
		case 2:P2_4=1;P2_3=1;P2_2=0;break;
		case 3:P2_4=1;P2_3=0;P2_2=1;break;
		case 4:P2_4=1;P2_3=0;P2_2=0;break;
		case 5:P2_4=0;P2_3=1;P2_2=1;break;
		case 6:P2_4=0;P2_3=1;P2_2=0;break;
		case 7:P2_4=0;P2_3=0;P2_2=1;break;
		case 8:P2_4=0;P2_3=0;P2_2=0;break;
	}
	P0=NixieTable[Number];	//段码输出
}

/**
  * @brief  数码管驱动函数,在中断中调用
  * @param  无
  * @retval 无
  */
void Nixie_Loop(void)
{
	static unsigned char i=1;
	Nixie_Scan(i,Nixie_Buf[i]);
	i++;
	if(i>=9){i=1;}
}

        3、使用定时器,可以消除按键抖动,配合如下代码

void Key_Loop(void)
{
	static unsigned char NowState,LastState;
	LastState=NowState;				//按键状态更新
	NowState=Key_GetState();		//获取当前按键状态
	//如果上个时间点按键按下,这个时间点未按下,则是松手瞬间,以此避免消抖和松手检测
	if(LastState==1 && NowState==0)
	{
		Key_KeyNumber=1;
	}
	if(LastState==2 && NowState==0)
	{
		Key_KeyNumber=2;
	}
	if(LastState==3 && NowState==0)
	{
		Key_KeyNumber=3;
	}
	if(LastState==4 && NowState==0)
	{
		Key_KeyNumber=4;
	}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/696852.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

开源低代码平台技术为数字化转型赋能!

实现数字化转型升级是很多企业未来的发展趋势&#xff0c;也是企业获得更多发展商机的途径。如何进行数字化转型&#xff1f;如何实现流程化办公&#xff1f;这些都是摆在客户面前的实际问题&#xff0c;借助于开源低代码平台技术的优势特点&#xff0c;可以轻松助力企业降低开…

【设计模式】创建型设计模式之 建造者模式

文章目录 一、介绍定义UML 类图 二、用法1 简化复杂对象具体构建过程省略抽象的 Builder 类省略 Director 类 三、用法2 控制对象构造方法、限制参数关系Guava 中使用建造者模式构建 cache 来进行参数校验 一、介绍 定义 建造者模式&#xff0c;将一个复杂的对象的构建过程与…

互联网应用主流框架整合之SpringMVC初始化及各组件工作原理

Spring MVC的初始化和流程 MVC理念的发展 SpringMVC是Spring提供给Web应用领域的框架设计&#xff0c;MVC分别是Model-View-Controller的缩写&#xff0c;它是一个设计理念&#xff0c;不仅仅存在于Java中&#xff0c;各类语言及开发均可用&#xff0c;其运转流程和各组件的应…

探索OrangePi AIpro:单板计算机的深度体验之旅

准备阶段&#xff1a;环境与资料 在开始我们的探索之旅前&#xff0c;确保您已准备好以下装备&#xff1a; OrangePi AIpro&#xff1a;我们的主角&#xff0c;一台功能强大的单板计算机。Windows 10笔记本电脑&#xff1a;作为我们的辅助工具&#xff0c;用于管理和测试。路…

FastAPI:在大模型中使用fastapi对外提供接口

通过本文你可以了解到&#xff1a; 如何安装fastapi&#xff0c;快速接入如何让大模型对外提供API接口 往期文章回顾&#xff1a; 1.大模型学习资料整理&#xff1a;大模型学习资料整理&#xff1a;如何从0到1学习大模型&#xff0c;搭建个人或企业RAG系统&#xff0c;如何评估…

python ---使用python操作mysql ---> pymysql

本章内容: 1:能够完成从MySQL中读取出数据; [重点] 查询: execute()、fetchall() 2:能够将数据写入MySQL数据库。 [重点] 插入数据: execute() sql insert into xxx [掌握]pymysql模块的安装 目标&#xff1a;了解如何安装pymysql模块&#xff1f; 当要使用Python和M…

操作系统复习-存储管理之虚拟内存

虚拟内存概述 有些进程实际需要的内存很大&#xff0c;超过物理内存的容量。多道程序设计&#xff0c;使得每个进程可用物理内存更加稀缺。不可能无限增加物理内存&#xff0c;物理内存总有不够的时候。虚拟内存是操作系统内存管理的关键技术。使得多道程序运行和大程序运行称…

永久免费的iPhone,iPad,Mac,iWatch锁屏,桌面壁纸样机生成器NO.105

使用这个壁纸样机生成器&#xff0c;生成iPhone&#xff0c;iPad&#xff0c;Mac&#xff0c;iWatch锁屏&#xff0c;桌面壁纸&#xff0c;展示你的壁纸作品&#xff0c;一眼就看出壁纸好不好看&#xff0c;适不适合 资源来源于网络&#xff0c;免费分享仅供学习和测试使用&am…

【C语言初阶】分支语句

&#x1f31f;博主主页&#xff1a;我是一只海绵派大星 &#x1f4da;专栏分类&#xff1a;C语言 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 目录 一、什么是语句 二、if语句 悬空else 三、switch语句 default 四、switch语句与if-else语句性能对比如何&#xff1f…

【Python核心数据结构探秘】:元组与字典的完美协奏曲

文章目录 &#x1f680;一、元组⭐1. 元组查询的相关方法❤️2. 坑点&#x1f3ac;3. 修改元组 &#x1f308;二、集合⭐1. 集合踩坑❤️2. 集合特点&#x1f4a5;无序性&#x1f4a5;唯一性 ☔3. 集合&#xff08;交&#xff0c;并&#xff0c;补&#xff09;&#x1f3ac;4. …

手撕设计模式——克隆对象之原型模式

1.业务需求 ​ 大家好&#xff0c;我是菠菜啊&#xff0c;前俩天有点忙&#xff0c;今天继续更新了。今天给大家介绍克隆对象——原型模式。老规矩&#xff0c;在介绍这期之前&#xff0c;我们先来看看这样的需求&#xff1a;《西游记》中每次孙悟空拔出一撮猴毛吹一下&#x…

【电赛】STM32-PID直流减速电机小车【寻迹+避障+跟随】【更新ing】

一.需求分析 1.主控&#xff1a;STM32C8T6&#xff08;没什么好说的哈哈&#xff09; 2.电机&#xff1a;JAG25-370电机 【问】为什么要用直流减速电机&#xff1f;&#xff1f; PID控制器需要依靠精确的反馈信号来调整其输出&#xff0c;确保电机按照预定的速度和位置运行…

简单聊一下Oracle,MySQL,postgresql三种锁表的机制,行锁和表锁

MySQL&#xff1a; MySQL使用行级锁定和表级锁定。行级锁定允许多个会话同时写入表&#xff0c;适用于多用户、高并发和OLTP应用。表级锁定只允许一个会话一次更新表&#xff0c;适用于只读、主要读取或单用户应用。 比如mysql开启一个窗口执行 begin; update xc_county_a…

激光点云配准算法——Cofinet / GeoTransforme / MAC

激光点云配准算法——Cofinet / GeoTransformer / MAC GeoTransformer MAC是当前最SOTA的点云匹配算法&#xff0c;在之前我用总结过视觉特征匹配的相关算法 视觉SLAM总结——SuperPoint / SuperGlue 本篇博客对Cofinet、GeoTransformer、MAC三篇论文进行简单总结 1. Cofine…

jquery.datetimepicker无法添加清除按钮的问题

项目场景&#xff1a; 自从决定用现有新技术实现CRM老项目起&#xff0c;就开始了我的折腾之路&#xff0c;最近一直在折腾前端页面&#xff0c;不像后端Java&#xff0c;写的有问题运行会报错&#xff0c;大多数报错一搜就能找到解决方案&#xff0c;前端这个倒好&#xff0c…

【Qt】TreeWidget中Item的UserCheckable注意事项,没有出现多选框

1. 异常 开启 ItemIsUserCheckable以后&#xff0c;界面上没有出现多选框。 QTreeWidgetItem *item new QTreeWidgetItem();item->setText(0, "hello");item->setFlags(Qt::ItemIsUserCheckable | Qt::ItemIsSelectable |Qt::ItemIsEnabled | Qt::ItemIsAuto…

Linux---防火墙

文章目录 目录 文章目录 前言 一.静态防火墙&#xff1a;iptables iptables五链 iptables 四表 iptables控制类型 iptables命令配置 前言 这儿主要介绍Linux系统本身提供的软件防火墙的功能&#xff0c;即数据包过滤机制。 数据包过滤&#xff0c;也就是分析进入主机的网络数…

k8s 1.28 搭建rabbitmq集群

1.环境 1.1 k8s 1.28 1.2 rabbit 3.8 1.3 工作空间default 1.4 注意&#xff0c;内存最好充足一点&#xff0c;因为我就两个节点一个master、一个node&#xff0c;起初我的node是8g&#xff0c;还剩3~4G&#xff0c;集群竟然一直起不来&#xff0c;后来将虚拟机内存扩大&#x…

刷机维修进阶教程-----红米k30 nv损坏故障 修复实例教程步骤解析

小米红米系列机型在米8起始就有了串码校验。不得随意更改参数限制。不同于其他机型,可以任意刷入同芯片的基带qcn来修复基带和串码丢失。米系列刷入同芯片基带qcn会提示nv损坏故障。是因为有串码校验。一般在于格机或者全檫除分区后写新参数出现的故障。 这种解决方法通常有两…

武忠祥17堂课没必要全听,这几个才是精华!

作者&#xff1a;Captain 链接&#xff1a;https://www.zhihu.com/question/381665751/answer/3197724055 来源&#xff1a;知乎 著作权归作者所有。商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处。 17堂课类似于习题课&#xff0c;是专题训练 17堂课省略了…