【STM32】GPIO输出(江科大)

一、GPIO简介

1.GPIO:通用输入输出口
2.可配置为8种输入输出模式
3.引脚电平:0-3.3V(输出最大3.3V),部分引脚可容忍5V(输入,有FT)
4.输出模式下,可控制端口输出高低电平,用以驱动LED、控制蜂鸣器、模拟通信协议输出时序等
5.输入模式下,可读取端口的高低电平或电压,用于读取按键输入、外接模块电平信号输入、ADC电压采集、模拟通信协议接收数据等
在这里插入图片描述
·在STM32中,所有的GPIO都是挂载在APB2外设总线上的
·每个GPIO外设有16个引脚
·寄存器是一段特殊的存储器,内核可以通过APB2总线对寄存器进行读写,这样就可以完成输出电平和读取电平的功能了。寄存器的每一位对应一个引脚,其中输出寄存器写1,对应的引脚就会输出高电平,写0,就会输出低电平;输入寄存器读取为1,对应的端口目前是高电平,读取为0,就是低电平。因为STM32是32位的单片机,所以内部的寄存器都是32位的,但端口只有16位,所以这个寄存器只有低16位对应的有端口
·驱动器是用来增加信号的驱动能力
在这里插入图片描述
左边:寄存器;中间:驱动器;右边:某一个IO的引脚
上面:输入部分;下面:输出部分
在这里插入图片描述

在这里插入图片描述

·输入部分:
1.最右边IO引脚,接两个保护二极管,对输入电压进行限幅,如果输入电压比3.3V高,上方的二极管导通,输入电压就会直接流入VDD而不会流入内部电路;如果输入电压比0V低,下方的二极管会导通,电流会从VSS直接流出去。
2.然后连接一个上拉电阻和一个下拉电阻,上拉电阻至VDD,下拉电阻至VSS,开关是可以通过程序进行配置的。如果上面导通,下面断开,就是上拉输入模式;如果下面导通,上面断开,就是下拉输入模式;如果两个都断开,就是浮空输入模式。为了避免引脚悬空导致的输入数据不确定,需要加上拉电阻或下拉电阻,上拉输入默认为高电平输入模式,下拉默认低电平。上拉电阻和下拉电阻的阻值都是比较大的,是一种弱上拉和弱下拉,目的是不影响正常的输入操作。
3.然后是一个肖特基触发器(施密特触发器),作用是对输入电压进行整形,执行逻辑是,如果输入电压大于某一阈值,输出就会瞬间升为高电平;如果输入电压小于某一阈值,输出就会瞬间降为低电平,可以有效避免因信号波动造成的输出抖动现象。接下来经过施密特触发器整形的波形就可以直接写入输入数据寄存器了,再用程序读取输入数据寄存器对应的某一位的数据,就可以知道端口的输入电平了。
4.最后上面还有两根线路,连接到片上外设的一些端口,模拟输入连接到ADC上,接收的是模拟量,接到施密特触发器前面;复用功能输入连接到其他需要读取端口的外设上,接收的是数字量,接到施密特触发器后面。
·输出部分:
1.数字部分由输出数据寄存器或片上外设控制,两种控制方式通过数据选择器接到输出控制部分。如果选择通过输出数据寄存器进行控制,就是普通的IO口输出,写这个数据寄存器的某一位就可以操作对应的某个端口。
2.左边的位设置/清除寄存器,用来单独操作输出数据寄存器的某一位(因为输出数据寄存器同时控制16个端口,并且这个寄存器只能整体读写),如果要对某一位进行置1操作,在位设置寄存器的对应位写1即可,剩下写0,内部电路自动将输出数据寄存器中对应位置为1,写0位保持不变;如果想对某一位进行清0的操作,就在位清零寄存器的对应位写1即可。
3.接下来接到两个MOS管(一种电子开关),信号来控制开关的导通和关闭,开关负责将IO口接到VDD或VSS,可以选择推挽、开漏或关闭三种输出方式
在这里插入图片描述
在这里插入图片描述

(1)在(强)推挽输出模式下,P-MOS和N-MOS均有效,数据寄存器为1时,上管导通,下管断开,输出直接接到VDD,输出高电平;0则相反。
(2)在开漏输出模式下,P-MOS无效,数据寄存器为1时,下管断开,这时输出相当于断开,也就是高阻模式;数据寄存器为0时,下管导通,输出直接接到VSS,也就是输出低电平,这种模式下只有低电平有驱动能力,可以作为通信协议的驱动方式,在多机通信的情况下,可以避免各个设备的相互干扰;还可以用于输出5V的电平信号(在IO口外接一个上拉电阻到5V的电源,当输出低电平时,有内部的N-MOS直接接VSS,当输出高电平时,由外部的上拉电阻拉高至5V,就可以输出5V的电平信号,用于兼容一些5V电平的设备)。
(3)关闭:当引脚配置为输入模式时,两个MOS管都无效,端口的电平由外部信号来控制。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/696786.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

详解FedProx:FedAvg的改进版 Federated optimization in heterogeneous networks

FedProx:2020 FedAvg的改进 论文:《Federated Optimization in Heterogeneous Networks》 引用量:4445 源码地址: 官方实现(tensorflow)https://github.com/litian96/FedProx 几个pytorch实现:…

十二、【源码】配置注解执行SQL

源码地址:https://github.com/mybatis/mybatis-3/ 仓库地址:https://gitcode.net/qq_42665745/mybatis/-/tree/12-annotation 配置注解执行SQL 简化一下流程,主要可以分为下面几步: 1.解析配置,写入配置项 2.执行…

问题排查: Goalng Defer 带来的性能损耗

本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。 本作品 (李兆龙 博文, 由 李兆龙 创作),由 李兆龙 确认,转载请注明版权。 文章目录 引言问题背景结论 引言 性能优化之路道阻且长,因为脱敏规定,…

Nginx 精解:正则表达式、location 匹配与 rewrite 重写

一、常见的 Nginx 正则表达式 在 Nginx 配置中,正则表达式用于匹配和重写 URL 请求。以下是一些常见的 Nginx 正则表达式示例: 当涉及正则表达式时,理解各个特殊字符的含义是非常重要的。以下是每个特殊字符的例子: ^&#xff1…

讯飞星火大模型个人API账号免费使用申请教程

文章目录 1.登录讯飞星火大模型官网 https://www.xfyun.cn/ 2.下滑找到Spark Lite,点击立即调用 3.星火大模型需要和具体的应用绑定,我们需要先创建一个新应用 https://console.xfyun.cn/app/myapp,应用名称可以按照自己的意愿起。 4.填写应用…

打造智慧工厂核心:ARMxy工业PC与Linux系统

智能制造正以前所未有的速度重塑全球工业格局,而位于这场革命核心的,正是那些能够精准响应复杂生产需求、高效驱动自动化流程的先进设备。钡铼技术ARMxy工业计算机,以其独特的设计哲学与卓越的技术性能,正成为众多现代化生产线背后…

ViT:2 理解CLIP

大模型技术论文不断,每个月总会新增上千篇。本专栏精选论文重点解读,主题还是围绕着行业实践和工程量产。若在某个环节出现卡点,可以回到大模型必备腔调或者LLM背后的基础模型新阅读。而最新科技(Mamba,xLSTM,KAN)则提…

vuInhub靶场实战系列--Kioptrix Level #3

免责声明 本文档仅供学习和研究使用,请勿使用文中的技术源码用于非法用途,任何人造成的任何负面影响,与本人无关。 目录 免责声明前言一、环境配置1.1 靶场信息1.2 靶场配置 二、信息收集2.1 主机发现2.1.1 netdiscover2.1.2 arp-scan主机扫描 2.2 端口扫描2.3 指纹识别2.4 目…

快速测试 Mybatis 复杂SQL,无需启动 Spring

快速测试mybatis的sql 当我们写完sql后,我们需要测试下sql是否符合预期,在填入各种参数后能否正常工作,尤其是对于复杂的sql。 一般我们测试可能是如下的代码: 由于需要启动spring,当项目较大的时候启动速度很慢,有些…

④-2单细胞学习-cellchat单数据代码补充版(通讯网络)

目录 通讯网络系统分析 ①社会网络分析 1,计算每个细胞群的网络中心性指标 2,识别细胞的信号流模式 ②非负矩阵分解(NMF)识别细胞的通讯模式 1,信号输出细胞的模式识别 2,信号输入细胞的模式识别 信…

RocketMq源码解析六:消息存储

一、消息存储核心类 rocketmq消息存储的功能主要在store这个模块下。 核心类就是DefaultMessageStore。我们看下其属性 // 配置文件 private final MessageStoreConfig messageStoreConfig; // CommitLog 文件存储实现类 private final CommitLog commitLog; …

【研发日记】Matlab/Simulink软件优化(三)——利用NaNFlag为数据处理算法降阶

文章目录 前言 背景介绍 初始算法 优化算法 分析和应用 总结 前言 见《【研发日记】Matlab/Simulink软件优化(一)——动态内存负荷压缩》 见《【研发日记】Matlab/Simulink软件优化(二)——通信负载柔性均衡算法》 背景介绍 在一个嵌入式软件开发项目中,需要开…

FedAvg论文

论文:Communication-Efficient Learning of Deep Networks from Decentralized Data 原code Reproducing 通过阅读帖子进行的了解。 联邦平均算法就是最典型的平均算法之一。将每个客户端上的本地随机梯度下降和执行模型的平均服务器结合在一起。 联邦优化问题 数…

开发小Tips:切换淘宝,腾讯,官方,yarn,cnpm镜像源,nrm包管理工具的具体使用方式(方便切换镜像源)

由于开发中经常要下载一些软件或者依赖,且大多数的官方源的服务器都在国外,网速比较慢,国内为了方便,国内一些大厂就建立一些镜像,加快下载速度。 1.各大镜像源的切换: 切换淘宝镜像源: npm …

Bio-Info每日一题:Rosalind-06-Counting Point Mutations

🎉 进入生物信息学的世界,与Rosalind一起探索吧!🧬 Rosalind是一个在线平台,专为学习和实践生物信息学而设计。该平台提供了一系列循序渐进的编程挑战,帮助用户从基础到高级掌握生物信息学知识。无论你是初…

数据结构笔记 线性表的查找 顺序,折半,分块查找

顺序查找:从头找到尾,或者从尾找到头 顺序查找的性能: 其中,辅助空间的O(1)用于存放哨兵的 折半查找:向下取整:指当计算的结果不为整数时取小于计算结果的整数。 折半查找的性能&am…

类和对象的学习总结(一)

面向对象和面向过程编程初步认识 C语言是面向过程的,关注过程(分析求解问题的步骤) 例如:外卖,关注点菜,接单,送单等 C是面向对象的,关注对象,把一件事拆分成不同的对象&…

十大排序

本文将以「 通俗易懂」的方式来描述排序的基本实现。 🧑‍💻阅读本文前,需要一点点编程基础和一点点数据结构知识 本文的所有代码以cpp实现 文章目录 排序的定义 插入排序 ⭐ 🧐算法描述 💖具体实现 &#x1f…

记一次Linux下Docker镜像服务器磁盘空间清理

我们开发环境Jenkins构建项目时报服务器磁盘空间不足,导致项目自动化构建部署失败, Docker镜像服务器磁盘空间清理我们做了多次了,之前在清理Docker镜像服务器时走了不少弯路,查了不少Docker镜像服务器空间清理,都大同…

架构设计-全局异常处理器404、405的问题

java web 项目中经常会遇到异常处理的问题,普遍的做法是使用全局异常处理,这样做有以下几种原因: 集中化处理:全局异常处理允许你在一个集中的地方处理整个应用程序中的异常。这有助于减少代码重复,因为你不必在每个可…