CPP初级:模板的运用!

目录

一.泛型编程

二.函数模板

1.函数模板概念

2.函数模板格式

3.函数模板的原理

三.函数模板的实例化

1.隐式实例化

2.显式实例化

3.模板参数的匹配原则

四.类模板

1.类模板的定义格式

2.类模板的实例化


一.泛型编程

泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。

泛型编程是一种编程范式,它允许程序员编写不依赖于特定数据类型的代码。

在泛型编程中,程序员可以定义一些通用的算法和数据结构,这些可以在不同的数据类型中使用。

比如交换函数,如果我们没有学习泛型编程,则我们就需要根据类型的交换,造出多个轮子:

typedef int Type;
void Swap(Type& left, Type& right)
{
	Type temp = left;
	left = right;
	right = temp;

}

void Swap(int& left, int& right)
{
	int temp = left;
	left = right;
	right = temp;
}

void Swap(double& left, double& right)
{

	double temp = left;
	left = right;
	right = temp;
}

使用函数重载固然可以实现这一问题,但是有几个不好的地方:

  •  代码空间会变大
  • 重载的函数只是类型不同,代码的复用率较低
  • 只要有新的类型需要使用这个函数,就需要重载新的函数
  • 代码的可维护性较低,一个出错可能全部的重载都出错

因为函数重载存在上述缺点,因此我们提出了”函数模板“

在现实生活中,我们可以通过往模具中填充不同的材料生成不同的铸件。

C++的开发者受到了启发,发明了模板。

模板:告诉编译器一个模子,让编译器根据不同的类型利用该模子生成代码。

模板可以分为函数模板和类模板:

模板是泛型编程的基础。

二.函数模板

1.函数模板概念

函数模板代表了一个函数家族,该家族模板与类型无关。

函数模板在使用时被参数化,根据实参类型产生的特定类型版本。

2.函数模板格式

我们用templata关键字来声明模板:

template <typename T1, typename T2,......typename Tn>
返回值类型  函数名(参数列表)
{
	//函数体
}

这里需要大家注意的是,我们的第一行后面并没有分号,也就代表着它并不是一条语句。

 现在我们举出一个实例:

template <typename T>//函数模板的声明
void Swap(T& left, T& right)
{
	T temp = left;
	left = right;
	right = temp;
}

此外,我们也可以使用class取代typename

template <class T>//函数模板的声明
void Swap(T& left, T& right)
{
	T temp = left;
	left = right;
	right = temp;
}

 现在我们使用一下我们定义的函数模板

#include <iostream>
using namespace std;
template <class T>//函数模板的声明
void Swap(T& left, T& right)
{
	T temp = left;
	left = right;
	right = temp;
}
int main()
{
	int a = 1, b = 2;
	Swap(a, b);
	cout << a << ' ' << b << endl;
	double c = 1.3, d = 2.5;
	Swap(c, d);
	cout << c << ' ' <<d << endl;
	return 0;
}

可以看到,这里圆满的完成了交换逻辑。 

3.函数模板的原理

那么,上述问题是如何解决的呢?

大家都知道,瓦特改良蒸汽机,人类开始了工业革命,解放了生产力。

机器生产淘汰掉了很多手工产品。

本质是什么,重复的工作交给了机器去完成。

因此有人给出了论调:懒人创造世界。

函数模板的本质也是如此

现在我们进入汇编来看一下上述代码运行的过程中编译器都干了什么事

 

可以看到,这里调用函数时,显式的规定了参数的类型。 

因此我们可以得到结论:函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。

我们的编译器根据这个模具帮我们做了这个事情。

注意:Swap在调用时,调用的不是void Swap(T& left, T& right),而是编译器预先根据要调用的类型进行推演。

编译器负责在编译时分析模板定义,并在需要时生成特定类型的代码,之后编译器会检查模板的语法,并确保模板的使用是合法的,之后编译器会根据实际使用的类型参数生成相应的函数或类的实现。

例如上图中的这两行代码:

00007FF6E7122423  call        Swap<int> (07FF6E7121352h)
00007FF6E7122480  call        Swap<double> (07FF6E7121398h) 

这两个函数模板就是编译器生成的。

在编译器的编译阶段,编译器就会根据传入的实参类型来推演生成对应类型的函数以供调用。

就比如上图: 当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码。

三.函数模板的实例化

用不同类型的参数使用函数模板称为函数模板的实例化

模板参数的实例化可以分为:隐式实例化和显式实例化

1.隐式实例化

隐式实例化即我们刚刚实例化的方法,这里不再过多赘述。

#include <iostream>
using namespace std;
template <class T>//函数模板的声明
T Add(const T& left, const T& right)
{
	return left + right;
}
int main()
{
	int a1 = 10, a2 = 20;
	Add(a1, a2);
	cout << Add(a1,a2) << endl;
	return 0;
}

 

 现在我们来看一下这段代码:

T Add(const T& left, const T& right)
{
	return left + right;
}
int main()
{
	int a1 = 10, a2 = 20;
	double d1 = 10.1, d2 = 20.2;

	Add(a1, d2);
	cout << Add(a1, d2) << endl;
	return 0;
}

这段代码在大部分编译器下是无法运行的,在VS2022中爆出了如下警告:

 

 为什么在大部分编译器下无法通过编译呢?

这是因为在编译期间,当编译器看到该实例化后,会去推演其实参的类型。

通过实参a1将T推演为了int通过实参d1将T推演为double类型

但是模板参数列表中只有一个T,编译器就无法判断T在这里是int还是double。

为什么在vs2022中可以编译成功呢?

这是因为编译器进行了类型转换操作,但是类型转换操作的风险是极大的,因为不知道此处你想要的是double还是int。

那么我们应该处理这个问题呢?

处理方式1:用户自己强制转换

Add(a1, (int)d2);//想要int类型的,我们直接将d2强转为int

 

处理方式2:采用显式实例化

那么,如何显式实例化呢?

2.显式实例化

显式实例化:在函数名的后面,参数列表的前面加一对尖括号<>,尖括号内部指定模板参数的实际类型。如下:

Add<int>(a, b);

 

如果参数类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。

3.模板参数的匹配原则

  • 在我们的程序中,一个非模板函数是可以和一个同名的函数模板同时存在的,而且该函数模板还可以被实例化为这个非模板函数
T Add(const T& left, const T& right)
{
	cout << "T Add(T& left,T& right)" << endl;
	return left + right;
}
int Add(const int& left, const int& right)
{
	cout << "int Add(int left, int right)" << endl;
	return left + right;
}
int main()
{
	Add(1, 2);
	Add<int>(1, 2);
	return 0;
}

我们运行之后,可以看到如下的结果: 

 

我们发现,第一个Add函数调用了专门处理int类型的加法函数,而第二个Add函数调用了模板。

那么,为什么第一个Add函数不调用函数模板呢?

这是因为如下内容:

  • 对于非模板函数和同名函数模板,如果其他条件都相同,在调用时会优先调用非模板函数而不会从该模板产生出一个实例。 
  • 如果条件不同的话,则会选择模板。
  • 也就是说,编译器会优先调用更加匹配的版本调用!

我们可以看一下下面的这段代码:

int Add(int left, int right)
{
	cout << "int Add(int left, int right)" << endl;
	return left + right;
}
// 通用加法函数
template<class T1, class T2>//注意这里有两个类型
T1 Add(T1 left, T2 right)
{
	cout << "T1 Add(T1 left, T2 right)" << endl;
	return left + right;
}
int main()
{
	Add(1, 2);// 与非函数模板类型完全匹配,不需要函数模板实例化
	Add(1, 2.0);// 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数
	return 0;
}

 

可以看到,第一个调用了非模板函数,第二个调用了模板函数。

 

  •  模板函数不允许自动类型转换,但普通函数可以进行自动类型转换。

对于模版T1 Add(T1 left, T2 right)不知道返回值是T1或T2,可以选择auto,auto虽然不太适合做返回值,但是对于简单普通函数操作,可以进行自动类型转换。

int Add(int left, int right)
{
	cout << "int Add(int left, int right)" << endl;
	return left + right;
}

//auto可作简单处理的函数返回值
template<class T1, class T2>
auto Add(const T1& left, const T2& right)
{
	cout << "auto Add(const T1& left, const T2& right)" << endl;
	return left + right;
}
int main()
{
	Add(1, 2);// 与非函数模板类型完全匹配,不需要函数模板实例化
	cout << Add(1, 2) << endl;

	Add(1, 2.0);// 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数
	cout << Add(1, 2.0) << endl;
	return 0;
}

四.类模板

1.类模板的定义格式

template<class T1, class T2, ..., class Tn>
class 类模板名
{
 // 类内成员定义
};
// 动态顺序表
// 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具
template<class T>
class Vector
{
public:
	Vector(size_t capacity = 10)
		: _pData(new T[capacity])
		, _size(0)
		, _capacity(capacity)
	{}
	~Vector();//类外定义
	void PushBack(const T& data);
		void PopBack();
		// ...
		size_t Size() { return _size; }
	T& operator[](size_t pos)
	{
		assert(pos < _size);
		return _pData[pos];
	}
private:
	T* _pData;
	size_t _size;
	size_t _capacity;
};
// 注意:类模板中函数放在类外进行定义时,需要加模板参数列表
template <class T>
Vector<T>::~Vector()
{
	if (_pData)
		delete[] _pData;
	_size = _capacity = 0;
}

模版Vector中只是提供了一个模具,具体印刷出什么模型,是由编译器最终实例化决定的。

注意:模版不建议声明和定义分离到.h 和.cpp,会出现链接错误,要分离也分离在.h。

2.类模板的实例化

类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字和变量名字中间加一个尖括号<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类。

Vector<int> intvector;
Vector<string> stringvector;

码字不易,如果你觉得博主写的不错的话,可以关注一下博主哦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/695804.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

express入门01服务器搭建以及get和post请求的监听

微搭提供了后端API的能力&#xff0c;但是不同的版本收费差别巨大&#xff0c;因为使用的门槛限制了中小企业使用低代码平台。那可不可以既要又要呢&#xff1f;答案是肯定的&#xff0c;那其实掌握一定的后端框架&#xff0c;借助我们在低代码中已经熟练掌握的技能其实是比较容…

2024.6.9 七

Python的time库 先导入库 import time相关函数 time.time() 返回当前时间的时间戳(一个记录时间的浮点数),从1970年开始算的 time.localtime(sec) 返回一个指定时间戳(sec)的struct_time对象,是一个元组封装起来的,默认是当地时间 struct_time对象 tm_year 年 tm_mon 月 tm_…

CDR2024软件破解Keygen激活工具2024最新版

CorelDRAW Graphics Suite2024最新版&#xff0c;这是一款让我爱不释手的图形设计神器&#xff01;作为一个软件评测专家&#xff0c;我一直在寻找一款能够提升我的设计效率和创造力的工具。而这款软件&#xff0c;简直就是为我量身定制的&#xff01;&#x1f389; 「CorelDR…

算法金 | AI 基石,无处不在的朴素贝叶斯算法

大侠幸会&#xff0c;在下全网同名「算法金」 0 基础转 AI 上岸&#xff0c;多个算法赛 Top 「日更万日&#xff0c;让更多人享受智能乐趣」 历史上&#xff0c;许多杰出人才在他们有生之年默默无闻&#xff0c; 却在逝世后被人们广泛追忆和崇拜。 18世纪的数学家托马斯贝叶斯…

温度传感器十大品牌

温度传感器品牌排行榜-十大热电偶品牌-热敏电阻品牌排行-Maigoo品牌榜

TikTok Shop账号需要防关联吗?

在TikTokShop作为新兴的电商销售渠道中&#xff0c;保护账号的安全和隐私&#xff0c;防止账号关联成为了重要的任务。为了更好地理解为何需要防关联以及如何进行防范&#xff0c;让我们深入探讨一下这个问题。 为什么要防关联&#xff1f; 1. 账号异常风险&#xff1a;防关联…

电容十大品牌供应商

十大电容器品牌&#xff0c;电解电容-陶瓷电容-超级电容器品牌排行榜-Maigoo品牌榜

Android gradle kts 8.0以上版本配置签名和修改APK输出名字

目录 概述修改签名配置新建签名文件目录配置签名信息使用签名信息打包 修改APK名称 概述 之前写过一篇文章是通过Kotlin的Dsl结合gradle编写的插件来管理项目依赖&#xff0c;我是从一个开源项目叫DanDanPlayAndroid项目上学到的&#xff0c;那时还没有使用toml文件来管理项目…

Linux入门学习(2)

1.相关复习新的指令学习 &#xff08;1&#xff09;我们需要自己创建一个用户&#xff0c;这个用户前期可以是一个root用户&#xff0c;后期使用创建的普通用户 &#xff08;2&#xff09;文件等于文件内容加上文件属性,对于文件的操作就包括对于文件内容的操作和文件属性&…

Apache SeaTunnel社区5月月报更新!

各位热爱 SeaTunnel 的小伙伴们&#xff0c;社区 5 月份月报来啦&#xff01; SeaTunnel 正在迅猛发展&#xff0c;积极投入社区项目建设的小伙伴将促进SeaTunnel不断提升数据同步的高可扩展性、高性能及高可靠性。欢迎关注每月月报更新&#xff0c;期待在下个月的Merge Star月…

Redis持久化说明

Redis的持久化是指将内存中的数据持久化到磁盘中&#xff0c;以保证数据在重启或宕机后不会丢失。 Redis提供了两种主要的持久化方式&#xff1a;RDB(Redis DataBase)和AOF(Append Only File)。 RDB&#xff08;Redis DataBase&#xff09; 1、RDB快照原理 RDB持久化方式会定…

STM32 | 独立看门狗 | RTC(实时时钟)

01、独立看门狗概述 在由单片机构成的微型计算机系统中,由于单片机的工作常常会受到来自外界电磁场的干扰,造成程序的跑飞,而陷入死循环,程序的正常运行被打断,由单片机控制的系统无法继续工作,会造成整个系统的陷入停滞状态,发生不可预料的后果,所以出于对单片机运行状…

ffmpeg视频解码原理和实战-(5)硬件加速解码后进行渲染并输出帧率

头文件&#xff1a; xvideoview.h #ifndef XVIDEO_VIEW_H #define XVIDEO_VIEW_H #include <mutex> #include <fstream> struct AVFrame;void MSleep(unsigned int ms);//获取当前时间戳 毫秒 long long NowMs();/// 视频渲染接口类 /// 隐藏SDL实现 /// 渲染方案…

初阶 《函数》 4. 函数的调用

4. 函数的调用 4.1 传值调用 函数的形参和实参分别占有不同内存块&#xff0c;对形参的修改不会影响实参 4.2 传址调用 传址调用是把函数外部创建变量的内存地址传递给函数参数的一种调用函数的方式 这种传参方式可以让函数和函数外边的变量建立起真正的联系&#xff0c;也就是…

电脑上的瑞士军刀

一、简介 1、一款专为 Windows 操作系统设计的桌面管理工具&#xff0c;它具备保存和恢复桌面图标位置的功能&#xff0c;使用户能够在各种情况下&#xff0c;如分辨率变动、系统更新或其他原因导致的图标位置混乱后&#xff0c;快速恢复到熟悉的工作环境。它还拥有诸多实用功能…

大数据数仓的数据回溯

在大数据领域&#xff0c;数据回溯是一项至关重要的任务&#xff0c;它涉及到对历史数据的重新处理以确保数据的准确性和一致性。 数据回溯的定义与重要性 数据回溯&#xff0c;也称为数据补全&#xff0c;是指在数据模型迭代或新模型上线后&#xff0c;对历史数据进行重新处理…

Java 数据类型 -- Java 语言的 8 种基本数据类型、字符串与数组

大家好&#xff0c;我是栗筝i&#xff0c;这篇文章是我的 “栗筝i 的 Java 技术栈” 专栏的第 004 篇文章&#xff0c;在 “栗筝i 的 Java 技术栈” 这个专栏中我会持续为大家更新 Java 技术相关全套技术栈内容。专栏的主要目标是已经有一定 Java 开发经验&#xff0c;并希望进…

ssm汽车在线销售系统

摘 要 21世纪的今天&#xff0c;随着社会的不断发展与进步&#xff0c;人们对于信息科学化的认识&#xff0c;已由低层次向高层次发展&#xff0c;由原来的感性认识向理性认识提高&#xff0c;管理工作的重要性已逐渐被人们所认识&#xff0c;科学化的管理&#xff0c;使信息存…

上位机图像处理和嵌入式模块部署(f407 mcu和其他mcu品类的选择)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 很多朋友读书的时候学的是stm32&#xff0c;工作中用的也是stm32。这本来问题不大&#xff0c;但是过去两三年的经历告诉我们&#xff0c;mcu的使用…

Vmess协议是什么意思? VLESS与VMess有什么区别?

VMess 是一个基于 TCP 的加密传输协议&#xff0c;所有数据使用 TCP 传输&#xff0c;是由 V2Ray 原创并使用于 V2Ray 的加密传输协议&#xff0c;它分为入站和出站两部分&#xff0c;其作用是帮助客户端跟服务器之间建立通信。在 V2Ray 上客户端与服务器的通信主要是通过 VMes…