C++11新特性【上】(统一的列表初始化、auto、decltype、右值引用、万能引用、完美转发)

一、C++11简介

        在2003年C++标准委员会曾经提交了一份技术勘误表(简称TC1),使得C++03这个名字已经取代了 C++98称为C++11之前的最新C++标准名称。不过由于C++03(TC1)主要是对C++98标准中的漏洞 进行修复,语言的核心部分则没有改动,因此人们习惯性的把两个标准合并称为C++98/03标准。 从C++0x到C++11,C++标准10年磨一剑,第二个真正意义上的标准珊珊来迟。相比于 C++98/03,C++11则带来了数量可观的变化,其中包含了约140个新特性,以及对C++03标准中 约600个缺陷的修正,这使得C++11更像是从C++98/03中孕育出的一种新语言。相比较而言, C++11能更好地用于系统开发和库开发、语法更加泛华和简单化、更加稳定和安全,不仅功能更 强大,而且能提升程序员的开发效率,公司实际项目开发中也用得比较多,所以我们要作为一个 重点去学习。C++11增加的语法特性非常篇幅非常多,我们这里没办法一 一讲解,所以本博客主要讲解实际中比较实用的语法。

官网参考:C++11 - cppreference.com

小故事: 1998年是C++标准委员会成立的第一年,本来计划以后每5年视实际需要更新一次标准,C++国际 标准委员会在研究C++ 03的下一个版本的时候,一开始计划是2007年发布,所以最初这个标准叫 C++ 07。但是到06年的时候,官方觉得2007年肯定完不成C++ 07,而且官方觉得2008年可能也 完不成。最后干脆叫C++ 0x。x的意思是不知道到底能在07还是08还是09年完成。结果2010年的 时候也没完成,最后在2011年终于完成了C++标准。所以最终定名为C++11。

二、统一的列表初始化

2.1 {}初始化

在C++98中,标准允许使用花括号{}对数组或者结构体元素进行统一的列表初始值设定。比如:

struct Point
{
 int _x;
 int _y;
};
int main()
{
 int array1[] = { 1, 2, 3, 4, 5 };
 int array2[5] = { 0 };
 Point p = { 1, 2 };
 return 0;
}

C++11扩大了用大括号括起的列表(初始化列表)的使用范围,使其可用于所有的内置类型和用户自 定义的类型,使用初始化列表时,可添加等号(=),也可不添加。

struct Point
{
 int _x;
 int _y;
};

int main()
{
 int x1 = 1;
 int x2{ 2 };

 int array1[]{ 1, 2, 3, 4, 5 };
 int array2[5]{ 0 };

 Point p{ 1, 2 };
 // C++11中列表初始化也可以适用于new表达式中
 int* pa = new int[4]{ 0 };
 return 0;
}

创建对象时也可以使用列表初始化方式调用构造函数初始化

class Date
{
public:
	Date(int year, int month, int day)
		:_year(year)
		, _month(month)
		, _day(day)
	{
		cout << "构造函数" << endl;
	}
private:
	int _year;
	int _month;
	int _day;
};

int main()
{
	Date d1(2022, 1, 1); // old style
	// C++11支持的列表初始化,这里会调用构造函数初始化
	Date d2{ 2022, 1, 2 };
	Date d3 = { 2022, 1, 3 }; //多参数隐式类型转换
	return 0; 
}

2.2 std::initializer_list

std::initializer_list的介绍文档:

http://www.cplusplus.com/reference/initializer_list/initializer_list/

initializer_list本质是一个标明长度的数组,其内部包装了两个指针,一个指向数组的开始,一个指向数组的结束的下一个地址,支持范围for

std::initializer_list是什么类型:

int main()
{
 // the type of il is an initializer_list 
 auto il = { 10, 20, 30 };
 cout << typeid(il).name() << endl;
 return 0;
}

std::initializer_list使用场景:

std::initializer_list一般是作为构造函数的参数,C++11对STL中的不少容器就增加std::initializer_list作为参数的构造函数,这样初始化容器对象就更方便了。也可以作为operator= 的参数,这样就可以用大括号赋值。

int main()
{
 //花括号中的内容会先构造一个initializer_list的临时对象,在隐式类型转换
 vector<int> v = { 1,2,3,4 };
 list<int> lt = { 1,2 };

 // 这里{"sort", "排序"}会先初始化构造一个pair对象
 map<string, string> dict = { {"sort", "排序"}, {"insert", "插入"} };

 // 使用大括号对容器赋值
 v = {10, 20, 30};
 
 return 0;

ps:一个自定义类型要想通过initializer_list构造对象,其需要支持initializer_list类型的构造函数

三. 声明

3.1 auto

在C++98中auto是一个存储类型的说明符,表明变量是局部自动存储类型,但是局部域中定义局 部的变量默认就是自动存储类型,所以auto就没什么价值了。C++11中废弃auto原来的用法,将 其用于实现自动类型推断。这样要求必须进行显示初始化,让编译器将定义对象的类型设置为初 始化值的类型。

int main()
{
	int i = 10;
	auto p = &i; 
	auto pf = strcpy;

	cout << typeid(p).name() << endl;  //int*
	cout << typeid(pf).name() << endl; //char * (__cdecl*)(char *,char const *)
    
    auto x; //error:使用auto必须显示初始化,否则无法推断类型

	map<string, string> dict = { {"sort", "排序"}, {"insert", "插入"} };
	//map<string, string>::iterator it = dict.begin();
    //迭代器的类型写起来太麻烦我们可以使用auto让编译器自己推导
	auto it = dict.begin();

	return 0;
}

3.2 decltype

decltype与typeid都可以推断出数据的类型,其区别是typeid推断出的类型是一个单纯的字符串,不能用来定义变量,而decltype推断出来的类型可以用来定义变量

int main()
{
	list<int>::iterator it1;

	// typeid推出时一个单纯的字符串
	cout << typeid(it1).name() << endl;
	// 不能用来定义对象
	//typeid(it1).name() it2;

	// 可以用来定义对象
	decltype(it1) it2;
	cout << typeid(it2).name() << endl;

	auto it3 = it1;
	cout << typeid(it3).name() << endl;

	return 0;
}

3.3 nullptr

由于C++中NULL被定义成字面量0,这样就可能回带来一些问题,因为0既能指针常量,又能表示 整形常量。所以出于清晰和安全的角度考虑,C++11中新增了nullptr,用于表示空指针。

#ifndef NULL
#ifdef __cplusplus
#define NULL   0
#else
#define NULL   ((void *)0)
#endif
#endif

四、右值引用和移动语义

7.1 左值引用和右值引用

传统的C++语法中就有引用的语法,而C++11中新增了的右值引用语法特性,所以从现在开始我们之前学习的引用就叫做左值引用。无论左值引用还是右值引用,都是给对象取别名。

什么是左值?什么是左值引用?

左值是一个表示数据的表达式(如变量名或解引用的指针),我们可以获取它的地址+可以对它赋值,左值可以出现赋值符号的左边,右值不能出现在赋值符号左边。定义时const修饰符后的左值,不能给他赋值,但是可以取它的地址。左值引用就是给左值的引用,给左值取别名。

int main() 
{
	// 以下的p、b、c、*p都是左值
	int* p = new int(0);
	int b = 1;
	const int c = 2;

	// 以下几个是对上面左值的左值引用
	int*& rp = p;
	int& rb = b;
	const int& rc = c;
	int& pvalue = *p;

	return 0;
}

什么是右值?什么是右值引用?

右值也是一个表示数据的表达式,如:字面常量、表达式返回值,函数返回值(这个不能是左值引用返回)等等,右值可以出现在赋值符号的右边,但是不能出现出现在赋值符号的左边,右值不能取地址。右值引用就是对右值的引用,给右值取别名。

int main() {
	double x = 1.1, y = 2.2;
	// 以下几个都是常见的右值
	10;
	x + y;
	fmin(x, y);
	// 以下几个都是对右值的右值引用
	int&& rr1 = 10;
	double&& rr2 = x + y;
	double&& rr3 = fmin(x, y);
	// 这里编译会报错:error C2106: “=”: 左操作数必须为左值
	//10 = 1;
	//x + y = 1;
	//fmin(x, y) = 1;

	return 0;
}

需要注意的是右值是不能取地址的,但是给右值取别名后,会导致右值被存储到特定位置,且可以取到该位置的地址,也就是说例如:不能取字面量10的地址,但是rr1引用后,可以对rr1取地址,也可以修改rr1。如果不想rr1被修改,可以用const int&& rr1 去引用,这个了解一下实际中右值引用的使用场景并不在于此,这个特性也不重要。

7.2 左值引用与右值引用比较

左值引用总结:

1. 左值引用只能引用左值,不能引用右值。

2. 但是const左值引用既可引用左值,也可引用右值

int main()
{
	// 左值引用只能引用左值,不能引用右值。    
	int a = 10;
	int& ra1 = a; // ra为a的别名    
	//int& ra2 = 10;   // 编译失败,因为10是右值
	const int& ra3 = 10; //const左值引用可以引用右值
}
右值引用总结:

1. 右值引用只能右值,不能引用左值。

2. 但是右值引用可以move以后的左值(move操作就是将左值属性改为右值属性)

int main()
{
	// 右值引用只能右值,不能引用左值。    
	int&& r1 = 10;
	// error C2440: “初始化”: 无法从“int”转换为“int &&”    
	// message : 无法将左值绑定到右值引用    
	int a = 10;    
	int&& r2 = a;
	// 右值引用可以引用move以后的左值
	int&& r3 = std::move(a); 
	return 0;
}

7.3 右值引用使用场景和意义

前面我们可以看到左值引用既可以引用左值和又可以引用右值,那为什么C++11还要提出右值引用呢?是不是化蛇添足呢?下面我们来看看左值引用的短板,右值引用是如何补齐这个短板的!

当函数返回对象是一个局部变量,出了函数作用域就不存在了,就不能使用左值引用返回,只能传值返回。例如:to_string函数的返回值只能是传值返回,因为str是局部变量,当函数调用完成,str就销毁了,如果使用左值引用返回会发生错误,接下来我们看一下传值返回编译器会有什么操作:

string to_string(int value)
{
	bool flag = true;
	if (value < 0)
	{
		flag = false;
		value = 0 - value;
	}

	string str;
	while (value > 0)
	{
		int x = value % 10;
		value /= 10;
		str += ('0' + x);
	}
	if (flag == false)
	{
		str += '-';
	}

	std::reverse(str.begin(), str.end());

	return str;
}
 
int main()
{
	string str = to_string(12345);
	return 0;
}

可见传值返回至少需要经过一次拷贝构造

右值引用解决方法

右值引用在广义上说可以分为两类:

  • 纯右值(内置类型)
  • 将亡值(自定义类型)

移动构造

移动构造本质是将参数右值的资源窃取过来,占位已有,那么就不用做深拷贝了,所以它叫做移动构造,就是窃取别人的资源来构造自己。移动构造中没有新开空间,拷贝数据,所以效率提高了。(移动赋值思想类似)

//移动构造
string(string&& str)
	:_str(nullptr)
{
	cout << "移动构造" << endl;
	swap(str);
}

to_string的返回值编译器认为他是一个右值,用这个右值构造main中的str,在不存在右值引用的情况下,会调用拷贝构造,因为const左值引用可以引用右值,如果存在移动构造,编译器调用更匹配的移动构造

不仅仅有移动构造,还有移动赋值

//移动赋值
string& operator=(string&& s)
{
	cout << "移动赋值" << endl;
	swap(s);
	return *this;
}
int main()
{
	zyq::string str;
	str=zyq::to_string(12345);
	return 0;
}

这里运行后,我们看到调用了一次移动构造和一次移动赋值。因为如果是用一个已经存在的对象接收,编译器就没办法优化了。to_string函数中会先用str生成构造生成一个临时对象,但是我们可以看到,编译器很聪明的在这里把str识别成了右值,调用了移动构造。然后在把这个临时对象做为to_string函数调用的返回值赋值给str,这里调用的移动赋值。

STL中的容器都是增加了移动构造和移动赋值,就连像push_back等函数结构都增加了右值引用版本

void push_back(value_type&& val); //右值版本
void push_back(const value_type& val);//左值版本

int main()
{
	list<string> lt;
	string s1("1111");
	// s1为左值,这里调用的是拷贝构造
	lt.push_back(s1);

	// 下面调用都是移动构造
	lt.push_back("2222");
	lt.push_back(std::move(s1));
	return 0;
}
运行结果:
// string(const string& s) -- 深拷贝
// string(string&& s) -- 移动语义
// string(string&& s) -- 移动语义

7.4 万能引用和完美转发

万能引用是指既可以既可以引用左值也可以引用右值,板中的&&不代表右值引用,而是万能引用,其既能接收左值又能接收右值。万能引用只是提供了能够接收同时接收左值引用和右值引用的能力,那什么是完美转发呢?接下来看如下代码:

void Fun(int& x) { cout << "左值引用" << endl; }
void Fun(const int& x) { cout << "const 左值引用" << endl; }
void Fun(int&& x) { cout << "右值引用" << endl; }
void Fun(const int&& x) { cout << "const 右值引用" << endl; }

template<typename T>
void PerfectForward(T&& t) 
{ 
	Fun(t); 
}

int main()
{
	PerfectForward(10);  //右值
	int a;
	PerfectForward(a);//左值
	PerfectForward(std::move(a));//右值
	const int b = 8;
	PerfectForward(b);//const左值
	PerfectForward(std::move(b)); // const 右值
	return 0;
}

为什么结果全是左值了呢?

这是因为右值一旦被引用后就可以取到地址了,所以右值引用的属性就是左值

那怎样才能在传递过程中保持原有的左值右值属性呢?这也就需要用到完美转发

std::forward 完美转发在传参的过程中保留对象原生类型属性

template<typename T>
void PerfectForward(T&& t) 
{ 
	Fun(std::forward<T>(t)); 
}

完美转发实际中的使用场景:

int main()
{
	zyq::list<zyq::string> li;

	zyq::string s1 = "abcd";
	li.push_back(s1); //调用左值版本

	li.push_back("1234");//调用右值版本

}

完整代码参考:begining: Record my growth

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/695366.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

攻防世界---misc---BotW-

1、下载附件是一张图片 2、查看图片属性&#xff0c;用winhex分析&#xff0c;没有发现奇怪的地方&#xff0c;用binwalk&#xff0c;接着使用foremost 3、得到两张图片&#xff0c;一张是原图&#xff0c;一张是特殊的字符 4、经过查阅资料得知&#xff0c;这是希卡文字&#…

《庆余年》角色穿越高考:谁将笑傲现代考场?

一、引言 《庆余年》是一部以古代中国为背景的权谋小说&#xff0c;其角色们各具特色&#xff0c;聪明才智、武艺高强、忠诚耿直等特质使得他们在古代世界中游刃有余。然而&#xff0c;如果我们将这些角色置于现代高考的背景之下&#xff0c;他们将如何面对这一挑战&#xff1…

Llama模型家族之Stanford NLP ReFT源代码探索 (三)reft_model.py代码解析

LlaMA 3 系列博客 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;一&#xff09; 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;二&#xff09; 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;三&#xff09; 基于 LlaMA…

【题解】—— LeetCode一周小结23

&#x1f31f;欢迎来到 我的博客 —— 探索技术的无限可能&#xff01; &#x1f31f;博客的简介&#xff08;文章目录&#xff09; 【题解】—— 每日一道题目栏 上接&#xff1a;【题解】—— LeetCode一周小结22 3.分糖果 II 题目链接&#xff1a;1103. 分糖果 II 排排坐…

Switch 之 H3C S5500

System # system view <H3C> system‐view [H3C] quit <H3C># display version [H3C]display version H3C Comware Software, Version 7.1.045, Release 3116# configuration save <H3C> save <H3C> display current‐configuration # factory reset …

Elasticsearch 认证模拟题 - 17

这两道题目非常具有代表性&#xff0c;分别是跨集群复制和跨集群检索&#xff0c;需要相应的 许可 这里在虚拟机上搭建集群完成这两道题目&#xff0c;这里补充一下 elasticsearch 和 kibana 的配置文件 # elasticsearch.yml cluster.name: cluster2 node.name: cluster2-node…

4.大模型微调技术LoRA

大模型低秩适配(LoRA)技术 现有PEFT 方法的局限与挑战 Adapter方法,通过增加模型深度而额外增加了模型推理延时。Prompt Tuning、Prefix Tuning、P-Tuning等方法中的提示较难训练,同时缩短了模型可用的序列长度。往往难以同时实现高效率和高质量,效果通常不及完全微调(f…

【成品设计】基于单片机的智慧交通控制系统设计

《基于单片机的智慧交通控制系统设计》 所需器件&#xff1a; STM32最小系统板。按键模块。红黄绿LED灯柱。距离传感器。OLED屏幕。语音识别模块。 整体功能&#xff1a; 本文介绍了一种基于单片机的智慧交通控制系统设计。该系统集成了多种传感器、控制器和执行器&#xf…

[Llama3] ReAct Prompt 测试实验

ReAct 是一种 LLM 提示和结果处理方法&#xff0c;结合了推理、行动计划和知识源整合&#xff0c;使 LLM 超越其语言模型&#xff0c;并在预测中使用来自现实世界的信息。 ReAct 是推理和行动的结合。 介绍 ReAct 的论文表明它比思维链提示更好。与后者不同的是&#xff0c;Re…

【数据结构】【版本1.0】【线性时代】——顺序表

快乐的流畅&#xff1a;个人主页 个人专栏&#xff1a;《算法神殿》《数据结构世界》《进击的C》 远方有一堆篝火&#xff0c;在为久候之人燃烧&#xff01; 文章目录 引言一、顺序表的概念1.1 最基础的数据结构&#xff1a;数组1.2 数组与顺序表的区别 二、静态顺序表三、动态…

基于STM32F030设计的多点温度采集系统(BC26+OneNet)

一、项目背景 随着物联网技术的迅猛发展&#xff0c;越来越多的智能设备应运而生&#xff0c;而温度采集系统是其中重要的一类。在现代工业和家庭生活中&#xff0c;温度对于生产、居住和储存等过程的控制有着非常重要的作用。因此&#xff0c;准确地采集环境温度数据并进行处…

Ubuntu基础 - 常用命令

目录 一.打开终端 1.快捷键 2.右键桌面 3.应用程序管理 二. 常用命令 1. ls命令 2. cd 命令 3. pwd 命令 4. mkdir 命令 5. rm 命令 和 rmdir 命令 6. mv 命令 7. cp 命令 8. touch 9. more 命令 less 命令 10. echo > 前言:大家好,这是一篇ubuntu常用的基…

进程概念(二)

目录 进程优先级基本概念查看系统进程PRI and NIPRI vs NI修改进程优先级的命令renice修改优先级进程其他概念 环境变量基本概念查看环境变量方法常见环境变量PATHHOMESHELL 查看环境变量环境变量相关的命令 环境变量特征命令行参数main函数中的俩个参数 argc argvmain函数的第…

机器学习--生成式模型和判别式模型的具体分析

文章目录 生成式模型和判别式模型的具体分析生成式模型定义工作原理优点缺点常见模型 判别式模型 总结生成式模型判别式模型 生成式模型和判别式模型的具体分析 生成式模型和判别式模型在机器学习中有着不同的目标、应用场景和性能特点。以下将详细分析它们的定义、工作原理、…

Golang-分离式加载器(传参)AES加密

目录 enc.go 生成: dec.go --执行dec.go...--上线 cs生成个c语言的shellcode. enc.go go run .\enc.go shellcode 生成: --key为公钥. --code为AES加密后的数据, ----此脚本每次运行key和code都会变化. package mainimport ("bytes""crypto/aes"&…

【Vue】核心概念 - module

目标 掌握核心概念 module 模块的创建 问题 由于使用单一状态树&#xff0c;应用的所有状态会集中到一个比较大的对象。当应用变得非常复杂时&#xff0c;store 对象就有可能变得相当臃肿。 这句话的意思是&#xff0c;如果把所有的状态都放在state中&#xff0c;当项目变得…

解锁ChatGPT:从GPT-2实践入手解密ChatGPT

⭐️我叫忆_恒心&#xff0c;一名喜欢书写博客的研究生&#x1f468;‍&#x1f393;。 如果觉得本文能帮到您&#xff0c;麻烦点个赞&#x1f44d;呗&#xff01; 近期会不断在专栏里进行更新讲解博客~~~ 有什么问题的小伙伴 欢迎留言提问欧&#xff0c;喜欢的小伙伴给个三连支…

虚拟机开启网络代理设置

前言&#xff1a; 不管是物理主机还是实验环境中的VMware虚拟机&#xff0c;有时候总要访问一些镜像网站或者资源网站拉取一些学习资料&#xff0c;但由于国内外网络环境的差异和网络安全的问题。总是会被阻拦。物理机相对比较容易一些&#xff0c;今天我们来说一说虚拟机应该…

Java——IO流(一)-(2/9):File类的常用方法(判断文件类型、获取文件信息、创建删除文件、遍历文件夹)

目录 常用方法1&#xff1a;判断文件类型、获取文件信息 方法 实例演示 常用方法2&#xff1a;创建文件、删除文件 方法 实例演示 常用方法3&#xff1a;遍历文件夹 方法 实例演示 常用方法1&#xff1a;判断文件类型、获取文件信息 方法 File提供的判断文件类型、获…

【数据结构(邓俊辉)学习笔记】图06——最小支撑树

文章目录 0. 概述1. 支撑树2. 最小支撑树3. 歧义性4. 蛮力算法5. Prim算法5.1 割与极短跨越边5.2 贪心迭代5.3 实例5.4 实现5.5 复杂度 0. 概述 学习下最小支撑树和prim算法。 1. 支撑树 最小的连通图是树。 连通图G的某一无环连通子图T若覆盖G中所有的顶点&#xff0c;则称…