机器学习--生成式模型和判别式模型的具体分析

文章目录

  • 生成式模型和判别式模型的具体分析
    • ==生成式模型==
      • 定义
      • 工作原理
      • 优点
      • 缺点
      • 常见模型
    • ==判别式模型==
  • ==总结==
    • 生成式模型
    • 判别式模型

在这里插入图片描述

生成式模型和判别式模型的具体分析

生成式模型和判别式模型在机器学习中有着不同的目标、应用场景和性能特点。以下将详细分析它们的定义、工作原理、优缺点和常见模型,并提供具体的示例。

生成式模型

定义

生成式模型是用于建模输入数据 (X) 和标签 (Y) 的联合概率分布 (P(X, Y))。通过学习联合分布,生成式模型可以推导出条件概率 (P(Y|X)) 进行分类,并且能够生成新的数据样本。


工作原理

生成式模型首先估计联合分布 (P(X, Y)),然后利用贝叶斯定理推导条件分布 (P(Y|X)):
P ( Y ∣ X ) = P ( X ∣ Y ) P ( Y ) P ( X ) P(Y|X) = \frac{P(X|Y) P(Y)}{P(X)} P(YX)=P(X)P(XY)P(Y)
其中:

  • (P(X|Y)) 是给定类别 (Y) 下的特征分布。
  • (P(Y)) 是类别的先验概率。
  • (P(X)) 是特征的边际分布。

优点

  1. 生成新数据:能够从学到的分布中生成新样本。
  2. 处理缺失数据:在推断时可以处理部分缺失的数据。
  3. 全面建模:对数据分布有全面的理解。

缺点

  1. 计算复杂:估计联合分布的计算复杂度较高。
  2. 训练困难:需要大量数据来准确估计分布,训练过程复杂。

常见模型

  1. 朴素贝叶斯(Naive Bayes):假设特征之间条件独立,适用于文本分类、垃圾邮件过滤等。

    P ( Y ∣ X ) ∝ P ( Y ) ∏ i = 1 n P ( X i ∣ Y ) P(Y|X) \propto P(Y) \prod_{i=1}^n P(X_i|Y) P(YX)P(Y)i=1nP(XiY)

  2. 高斯混合模型(Gaussian Mixture Models, GMM): 假设数据由多个高斯分布组成,用于聚类和密度估计。
    P ( X ) = ∑ k = 1 K π k N ( X ∣ μ k , Σ k ) P(X) = \sum_{k=1}^K \pi_k \mathcal{N}(X|\mu_k, \Sigma_k) P(X)=k=1KπkN(Xμk,Σk)

  3. 隐马尔可夫模型(Hidden Markov Models, HMM):用于时间序列数据,如语音识别、基因序列分析。

    P ( X , Y ) = P ( Y 1 ) ∏ t = 2 T P ( Y t ∣ Y t − 1 ) P ( X t ∣ Y t ) P(X, Y) = P(Y_1) \prod_{t=2}^T P(Y_t|Y_{t-1}) P(X_t|Y_t) P(X,Y)=P(Y1)t=2TP(YtYt1)P(XtYt)

  4. 生成对抗网络(Generative Adversarial Networks, GANs):用于图像生成,通过对抗训练生成逼真的图像。包括生成器 (G) 和判别器 (D),相互博弈提升生成效果。

  5. 变分自编码器(Variational Autoencoders, VAEs)
    用于生成图像、文本,通过变分推断进行训练。
    由编码器和解码器组成,学习数据的潜在表示。

示例

  • GANs生成图像:生成对抗网络可以生成逼真的人脸图像,广泛用于图像生成和增强。
  • 朴素贝叶斯文本分类:通过计算词频分布,分类电子邮件为垃圾邮件或正常邮件。

判别式模型

定义
判别式模型直接建模输入数据 (X) 和标签 (Y) 之间的条件概率分布 (P(Y|X)),或直接学习输入到输出的映射 (Y = f(X))。主要用于分类和回归任务。

工作原理
判别式模型通过优化目标函数来直接学习从输入到输出的映射:

P ( Y ∣ X ) = 1 Z ( X ) exp ⁡ ( f ( X , Y ) ) P(Y|X) = \frac{1}{Z(X)} \exp(f(X, Y)) P(YX)=Z(X)1exp(f(X,Y))

其中 (Z(X)) 是归一化因子,确保概率分布的和为1。

优点

  1. 计算效率高:直接建模条件概率,训练和预测速度快。
  2. 优化分类边界:关注输入特征和输出标签的直接关系。
  3. 高效处理大规模数据:适用于大数据量下的分类和回归任务。

缺点

  1. 无法生成新数据:不能从模型中生成新样本。
  2. 对缺失数据不鲁棒:无法处理数据中的缺失值。
  3. 需要更多标签数据:通常需要大量标注数据来训练。

常见模型

  1. 逻辑回归(Logistic Regression)

    • 用于二分类问题,学习输入特征和标签的条件概率。
    • P ( Y = 1 ∣ X ) = 1 1 + exp ⁡ ( − ( β 0 + β 1 X 1 + ⋯ + β p X p ) ) P(Y=1|X) = \frac{1}{1 + \exp(-(\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p))} P(Y=1∣X)=1+exp((β0+β1X1++βpXp))1
  2. 支持向量机(Support Vector Machines, SVM)

    • 通过最大化分类间隔的超平面进行分类。
    • f ( X ) = w T X + b f(X) = w^T X + b f(X)=wTX+b
  3. 线性判别分析(Linear Discriminant Analysis, LDA)

    • 通过学习线性组合的投影来最大化类间距离。
    • δ k ( X ) = X T Σ − 1 μ k − 1 2 μ k T Σ − 1 μ k + log ⁡ ( π k ) \delta_k(X) = X^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log(\pi_k) δk(X)=XTΣ1μk21μkTΣ1μk+log(πk)
  4. 决策树(Decision Trees)

    • 通过树形结构递归分割数据,进行分类或回归。
    • 根据信息增益或基尼系数选择最优分割点。
  5. 随机森林(Random Forest)

    • 集成多棵决策树,通过多数投票或平均进行预测。
    • 提升模型的鲁棒性和准确性。
  6. 梯度提升机(Gradient Boosting Machines, GBM)

    • 逐步添加弱学习器(如决策树)来优化模型。
    • 通过残差学习逐步提升预测精度。
  7. 神经网络(Neural Networks)

    • 包括单层感知机、多层感知机(MLP)、卷积神经网络(CNN)、循环神经网络(RNN)等。
    • 通过多个隐藏层和非线性激活函数,能够拟合复杂的非线性关系。

示例

  • 逻辑回归二分类:用于预测信用卡用户是否会违约,通过学习用户特征与违约行为的关系。
  • SVM文本分类:用于情感分析,通过找到最优超平面分类正负情感文本。

总结

在这里插入图片描述

生成式模型

  • 目标:建模联合概率分布 (P(X, Y))。
  • 优点:可以生成新数据、处理缺失数据、全面建模。
  • 缺点:计算复杂、训练困难。
  • 常见模型:朴素贝叶斯、GMM、HMM、GANs、VAEs。

判别式模型

  • 目标:建模条件概率分布 (P(Y|X)) 或直接学习输入到输出的映射。
  • 优点:计算效率高、优化分类边界、处理大规模数据高效。
  • 缺点:无法生成新数据、对缺失数据不鲁棒、需要大量标注数据。
  • 常见模型:逻辑回归、SVM、LDA、决策树、随机森林、GBM、神经网络。

选择生成式模型还是判别式模型取决于具体的任务需求。如果需要生成新数据或处理不完全数据,生成式模型是更好的选择;如果主要目标是分类或回归,且数据规模较大,判别式模型通常更为高效。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/695350.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Golang-分离式加载器(传参)AES加密

目录 enc.go 生成: dec.go --执行dec.go...--上线 cs生成个c语言的shellcode. enc.go go run .\enc.go shellcode 生成: --key为公钥. --code为AES加密后的数据, ----此脚本每次运行key和code都会变化. package mainimport ("bytes""crypto/aes"&…

【Vue】核心概念 - module

目标 掌握核心概念 module 模块的创建 问题 由于使用单一状态树,应用的所有状态会集中到一个比较大的对象。当应用变得非常复杂时,store 对象就有可能变得相当臃肿。 这句话的意思是,如果把所有的状态都放在state中,当项目变得…

解锁ChatGPT:从GPT-2实践入手解密ChatGPT

⭐️我叫忆_恒心,一名喜欢书写博客的研究生👨‍🎓。 如果觉得本文能帮到您,麻烦点个赞👍呗! 近期会不断在专栏里进行更新讲解博客~~~ 有什么问题的小伙伴 欢迎留言提问欧,喜欢的小伙伴给个三连支…

虚拟机开启网络代理设置

前言: 不管是物理主机还是实验环境中的VMware虚拟机,有时候总要访问一些镜像网站或者资源网站拉取一些学习资料,但由于国内外网络环境的差异和网络安全的问题。总是会被阻拦。物理机相对比较容易一些,今天我们来说一说虚拟机应该…

Java——IO流(一)-(2/9):File类的常用方法(判断文件类型、获取文件信息、创建删除文件、遍历文件夹)

目录 常用方法1:判断文件类型、获取文件信息 方法 实例演示 常用方法2:创建文件、删除文件 方法 实例演示 常用方法3:遍历文件夹 方法 实例演示 常用方法1:判断文件类型、获取文件信息 方法 File提供的判断文件类型、获…

【数据结构(邓俊辉)学习笔记】图06——最小支撑树

文章目录 0. 概述1. 支撑树2. 最小支撑树3. 歧义性4. 蛮力算法5. Prim算法5.1 割与极短跨越边5.2 贪心迭代5.3 实例5.4 实现5.5 复杂度 0. 概述 学习下最小支撑树和prim算法。 1. 支撑树 最小的连通图是树。 连通图G的某一无环连通子图T若覆盖G中所有的顶点,则称…

将克隆到本地的6.824项目上传到自己的github

前置知识见:把自己在本地完成的mit6.s081项目上传到自己的github仓库里_mit6.s081 lab上传-CSDN博客 先在github建立一个自己的仓库 由于github可以给自己的主分支改名了,我这次是勾选了创建README文件 在本地同样是建立一条remote分支 git remote add…

机器学习-- 如何清洗数据集

文章目录 引言:数据清洗的具体步骤数据清洗的具体方法和示例1. 处理缺失值2. 去除重复数据3. 修正数据格式4. 处理异常值5. 标准化和归一化6. 处理不一致的数据7. 转换数据类型8. 数据集成 总结 引言: 数据清洗是数据处理和分析的关键步骤,旨…

MLU370-M8 chattts-ui快速出击

目录 一、paas平台环境选择二、代码环境准备1.代码下载2.环境安装modelsopetransformersaccelerate 3.常规pip安装4.代码修改4.代码修改 三.算法启动 一、paas平台环境选择 驱动选择:5.10.22及以上 镜像选择:pytorch2.1 二、代码环境准备 1.代码下载…

macOS - 终端快捷键

本文转自 Mac 上“终端”中的键盘快捷键 https://support.apple.com/zh-cn/guide/terminal/trmlshtcts/mac 以下基于系统版本 macOS Sonoma 14 文章目录 Mac 上“终端”中的键盘快捷键1、使用“终端”窗口和标签页2、编辑命令行3、在“终端”窗口中选择和查找文本4、使用标记和…

UE5基础1-下载安装

目录 一.下载 二.安装 三.安装引擎 四.其他 简介: UE5(Unreal Engine 5)是一款功能极其强大的游戏引擎。 它具有以下显著特点: 先进的图形技术:能够呈现出令人惊叹的逼真视觉效果,包括高逼真的光影、材…

《Brave New Words 》3.4 最重要的学科领域

Part III Empowering the Next Innovators 第三部分 赋能下一代创新者 The Most Important Subject-Matter Domain to Master 最重要的学科领域 In the world of education, it’s crucial for developers to field-test their ideas. Essentially, it means taking our educat…

导数和微分

导数和微分 flyfish 本文主要论述其中的区别 导数是描述函数变化率的量,它表示函数在某点的瞬时变化速度和切线斜率。 微分是导数的一个线性近似,表示函数在某点处随着自变量变化的增量。 导数和微分在本质上都是研究函数变化的工具,但导数…

西门子学习笔记11 - PTO脉冲指令的使用

1、使用指令前的设置 1、打开一个脉冲发生器,并启用 2、选择使用PTO(脉冲A和方向B) 3、硬件设置输出 4、这样前期的准备工作就完成了 2、指令的使用 1、添加指令CTRL_PTO 2、配置如下 3、方向控制程序如下 4、最后进行测试即可

总结【GetHub的WebAPI,ASSET_ID】,【Linux的jq命令】(草稿版+实际操作)

目录 1.介绍一下github中的 asset_id 2. GitHub 的 asset_id相关操作 2.1.获取特定 repository 的 release 列表: 2.2.获取特定 release 中的 asset 列表,并找到 asset_id: 2.3.使用ASSET_ID获取资材 3.返回的 assets 的信息 是什么样样…

AI 大模型重点行业应用情况

1、AI 大模型重点行业应用情况总览 AI大模型将率先在互联网办公、金融等数字化程度较高的行业快速渗透,医疗、交通、 制造等行业的潜在渗透空间大。 2、AI 大模型在金融行业应用情况 金融行业的应用场景丰富,是最早进行数字化转型的机构,因此…

抛弃昂贵BI,企业仍可低成本实现数据分析

有的读者看完《BI工具选型不入坑,你要这么选》这篇文章就陷入迷茫了,我要做企业级数据分析,看过去各家产品都各有千秋,实在难以抉择,或者已经选了仍是纠结不已。 这里我抛出另一种思路:如果不用BI&#xf…

定时器中断计数

1.定时器中断配置步骤 (1)RCC开启时钟。 (2)选择时基单元的时钟源(内部时钟源)。 (3)配置时基单元:预分频器、自动重装器、计数模式等。 (4)配…

[Mdfs] lc3067. 在带权树网络中统计可连接服务器对数目(邻接表+图操作基础+技巧+好题)

文章目录 1. 题目来源2. 题目解析 1. 题目来源 链接:3067. 在带权树网络中统计可连接服务器对数目 2. 题目解析 挺有意思的一道题目,重点是要能够读懂题目,然后结合几个图相关的处理技巧即可拿下。 图存储:邻接表即可。无向无…

DP:回文串模型

一、回文子串 . - 力扣(LeetCode) 该题有3种解法 (1)中心扩展算法(在字符串章节有介绍)时间复杂度O(N^2),空间复杂度O(1) (2)马丁车…