【C++】函数模板和类模版

目录

前言

模板参数

类型模板参数

非类型模板参数

模板的特化

函数模板的特化

类模板的特化

全特化

偏特化

模板的分离编译

模板总结 


前言

函数模板和类模板是C++模板编程中的两个核心概念,它们允许程序员编写泛型代码,这些代码可以在多种数据类型上工作,而无需为每个数据类型编写单独的实现。这提高了代码的可复用性和灵活性。所以说,模板还是很重要的。

模板参数

模板参数分为类型形参和非类型形参。

类型模板参数

出现在模板参数列表中,跟在class或者typename之后的参数类型名称。

//T可以是int、double等任何类型
template <class T>
T Add(T& a, T& b)
{
	return a + b;
}

非类型模板参数

非类型模板参数,就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用。

非类型模板参数不一定是整形常量,也可以是double等类型。需要注意的是,非类型模板参数必须在编译期就能确定结果。

//N就是非类型模板参数
template <class T, size_t N = 10>
class array
{
public:
	T& operator[](size_t index)
	{
		return _array[index];
	}
	const T& operator[](size_t index) const
	{
		return _array[index];
	}
	size_t size() const
	{
		return _size;
	}
	bool empty() const
	{
		return _size == 0;
	}
private:
	T _array[N];
	size_t _size;
};

模板的特化

特化的概念:特化是一种技术,当模板参数为某些特殊类型时,开发者可以为其定义特定的实现。这种技术允许开发者在需要时覆盖模板的默认行为,为特定类型或类型组合提供优化或特定的功能。

通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型可能会产生错误的结果,需要特殊处理。例如,实现一个专门用来进行小于比较的函数模板。


template <class T>
bool less(T left, T right)
{
	return left < right;
}

int main()
{
	cout << less(1, 2) << endl;//可以正确比较

	Date d1(2024, 6, 8);
	Date d2(2024, 6, 9);

	cout << less(d1, d2);//可以正确比较

	Date* p1 = &d1;
	Date* p2 = &d2;
	cout << less(p1, p2) << endl;//比较结果错误

	return 0;
}

可以看到,对于最后的特殊场景,比较结果是错误的。原因在于,比较的是p1和p2指针的地址,而不是比较它们指向的内容。

此时,就需要对函数模板进行特化了。模板特化,就是在原模板的基础上,针对特殊类型进行特殊化的实现方式。模板特化分为类模板特化和函数模板特化。 

函数模板的特化

步骤:

1)必须要先有一个基础的函数模板

2)关键字template后面接一对空的尖括号<>

3)函数名后跟一对尖括号<>,尖括号中指定需要特化的类型


template <class T>
bool less(T left, T right)
{
	return left < right;
}

//函数模板的特化
template <>
bool less<Date*>(Date* left, Date* right)
{
	return *left < *right;
}

int main()
{
	cout << less(1, 2) << endl;//可以正确比较

	Date d1(2024, 6, 8);
	Date d2(2024, 6, 9);

	cout << less(d1, d2);//可以正确比较

	Date* p1 = &d1;
	Date* p2 = &d2;
	cout << less(p1, p2) << endl;//比较结果错误

	return 0;
}

但是,一般情况下,如果函数模板遇到不能处理或者处理有误的类型,为了实现简单,通常都是将该函数直接给出。

bool less(Date* left, Date* right)
{
	return *left < *right;
}

 这样实现简单明了,代码的可读性高容易书写,因此函数模板不建议特化。

类模板的特化

类模板的特化分为两种,全特化和偏特化(局部特化\半特化)。

全特化

全特化就是将模板参数列表中的所有参数都确定化。

template <class T1, class T2>
class Data
{
public:
	Data() { cout << "Data<T1, T2>" << endl; }
private:
	T1 _d1;
	T2 _d2;
};

//全特化
template<>
class Data<int, char>
{
public:
	Data() { cout << "Data<int, char>" << endl; }
private:
	int _d1;
	char _d2;
};

偏特化

  • 偏特化是指为模板类或模板函数提供一份基于原始模板定义但针对部分模板参数进行条件限制或更具体实现的定义。
  • 将模板参数列表中的一部分参数特化
  • 参数更进一步的限制,例如限定参数的类型

将模板参数列表中的一部分参数特化

template <class T1, class T2>
class Data
{
public:
	Data() { cout << "Data<T1, T2>" << endl; }
private:
	T1 _d1;
	T2 _d2;
};

//将模板参数列表中的一部分参数特化
template <class T1>
class Data<T1, int>
{
public:
	Data() { cout << "Data<T1, int>" << endl; }
private:
	T1 _d1;
	int _d2;
};

参数类型更进一步的限制

1)两个参数偏特化为指针类型

template <class T1, class T2>
class Data
{
public:
	Data() { cout << "Data<T1, T2>" << endl; }
private:
	T1 _d1;
	T2 _d2;
};

//进一步限制参数
template <typename T1, typename T2>
class Data<T1*, T2*>
{
public:
	Data() { cout << "Data<T1*, T2*>" << endl; }
private:
	T1 _d1;
	T2 _d2;
};

 如果都是指针类型,就会走上面的这个偏特化。

2)两个参数偏特化为引用类型

template <class T1, class T2>
class Data
{
public:
	Data() { cout << "Data<T1, T2>" << endl; }
private:
	T1 _d1;
	T2 _d2;
};

template <typename T1, typename T2>
class Data<T1&, T2&>
{
public:
	Data(const T1& d1, const T2& d2)
		:_d1(d1)
		, _d2(d2)
	{
		cout << "Data<T1&, T2&>" << endl;
	}
private:
	const T1& _d1;
	const T2& _d2;
};

 如果都是引用类型,那么将走这个偏特化。

模板的分离编译

分离编译的概念:

一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有的目标文件链接起来形成单一的可执行文件的过程称为分离编译模式。

模板在C++中并不直接支持传统意义上的分离编译,即声明和定义放在不同的文件中。这是因为模板的实例化是在编译时进行的,编译器需要看到模板的定义才能对模板进行实例化。

请看一下的场景:.h放声明,一个.cpp文件放定义,然后在另一个.cpp文件中调用。

//a.h
template <class T>
T Add(const T& left, const T& right);

//a.cpp
template <class T>
T Add(const T& left, const T& right)
{
	return left + right;
}

//main.cpp
#include "a.h"
int main()
{
	Add(1, 2);
	return 0;
}

这就会导致链接错误。原因如下:

首先,每个源文件(加上其包含的头文件)通常被视为独立的编译单元,编译器会单独编译每个编译单元,这些编译单元在编译期间不会进行交互。因为main.cpp包含了头文件,所以头文件会插入该源文件中并在编译时被考虑,但是在编译main.cpp的过程中,函数模板Add只有声明,没有定义,因此它没有被实例化。在编译a.cpp的过程中,编译器没有看到对Add函数的实例化,因此不会生成具体的加法函数。在main.cpp中调用Add<int>,编译器在链接时才会找其地址,但是这个函数并没有实例化生成具体的代码,因此链接错误。

解决方法:

1)将声明和定义放到一个.hpp或.h文件中。

2)模板定义的位置显示实例化。

显示实例化:

//a.h
template <class T>
T Add(const T& left, const T& right);

//a.cpp
template <class T>
T Add(const T& left, const T& right)
{
	return left + right;
}

//显示实例化
template
int Add(const int& left, const int& right);


//main.cpp
#include "a.h"
int main()
{
	Add(1, 2);
	return 0;
}

模板总结 

【优点】

1)复用了代码,更快的迭代开发,C++标准模板库STL因此产生。

2)增强了代码的灵活性。

【缺点】

1)模板会导致代码膨胀问题,也会导致编译时间变长。

2)出现模板编译错误时,错误信息非常凌乱,不易定位错误。

【模板导致编译时间变长的几个原因】

1)类型推导

模板在编译阶段需要进行类型推导。当编译器遇到模板是,它需要根据模板参数的类型生成相应的代码。这个过程需要编译器进行额外的分析和计算,因此消耗更多的编译时间。

2)代码膨胀

模板的使用可能导致代码膨胀。由于模板在编译时回生成实际的代码,这可能导致生成的代码量远大于原始代码,大量的代码需要编译器进行解析和处理,从而导致编译时间变长。


完~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/695263.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

《Brave New Words 》2.2 阅读理解的未来,让文字生动起来!

Part II: Giving Voice to the Social Sciences 第二部分&#xff1a;为社会科学发声 The Future of Reading Comprehension, Where Literature Comes Alive! 阅读理解的未来&#xff0c;让文字生动起来&#xff01; Saanvi, a ninth grader in India who attends Khan World S…

【Python教程】2-函数、逻辑运算与条件判断

在整理自己的笔记的时候发现了当年学习python时候整理的笔记&#xff0c;稍微整理一下&#xff0c;分享出来&#xff0c;方便记录和查看吧。个人觉得如果想简单了解一名语言或者技术&#xff0c;最简单的方式就是通过菜鸟教程去学习一下。今后会从python开始重新更新&#xff0…

JAVA:通过电信ctg.ag.sdk从电信物联平台AIOT获取设备上报数据的简单示例

一、问题场景 物联设备比如NB设备通过NB协议将数据传到电信平台后&#xff0c;我们的应用服务如何从电信平台获取可用的上报数据。以下通过电信开发者平台提供的SDK来简单演示下整个过程。 二、使用电信 SDK进行开发 电信AIOT物联平台提供了两种方式获取平台数据&#xff0c…

阿里云 MQTT 服务器搭建与测试(上传和下发数据finish)

一、 MQTT 概念 MQTT(Message Queuing Telemetry Transport,消息队列遥测传输协议),是一种基于发布/订阅(publish/subscribe)模式的"轻量级"通讯协议,该协议构建于 TCP/IP协议上,由 IBM 在 1999 年发布。MQTT 最大优点在于,可以以极少的代码和有限的带宽,…

JVM对象分配和垃圾回收机制

一、对象创建 1.1 符号引用 new 创建一个对象&#xff0c;需要在JVM创建对象。 符号引用&#xff1a;目标对象采用一个符号表示&#xff0c;类A加载的时候&#xff0c;如果成员变量类B还没有被加载进来&#xff0c;采用一个符号&#xff08;字面量&#xff09;来表示&#x…

Vulnhub靶机之reven 1

一、信息收集 nmap扫描网段&#xff0c;靶机地址为192.168.145.129。 nmap -sP 192.168.145.* 扫一下端口&#xff0c;开放了22、80、111、50967。 nmap -sT -T4 -p1-65535 192.168.145.129 再看一下目录情况&#xff0c;发现一个疑似后台登录的地址。 dirsearch -u http://…

基于Python + Flask+ Mysq实现简易留言板

使用Python Flask Mysql实现简易留言板&#xff0c;包括网友编辑留言、修改留言&#xff0c;删除留言、分页显示四大功能。 写出留言板建设过程&#xff0c;包括开发使用工具、留言板模块设计、数据库设计、页面设计、关键技术。 留言板建设过程总结 一&#xff0e;开发使用…

图像处理ASIC设计方法 笔记28 无效像元检测

&#xff08;一&#xff09;无效像元检测 P149 基于场景的红外焦平面无效像元检测 空间噪声的两个来源1 各探测源相应的非均匀性产生 2 IRFPA组件制造过程中产生 先进的工艺水平可以做到成品期间不存在连续分布或中心分布的无效像元&#xff0c;无效像元率在0.5%以内。国内…

LeetCode | 1.两数之和

这道题&#xff0c;很容易想到的是暴力解&#xff0c;直接一个双重循环&#xff0c;对于数组中的每一个数&#xff0c;都去遍历其他数字&#xff0c;看能不能找到数字等于target-nums[i]的数字&#xff0c;时间复杂度为 O ( n 2 ) O(n^2) O(n2) 但是通过其他题目&#xff0c;我…

动态规划(多重背包+完全背包)

P2851 [USACO06DEC] 最少的硬币 G 题解&#xff1a;从题目上看到那个有n种不同的货币&#xff0c;对于买家来说每个货币有C[ i ]个&#xff0c;是有限个数的&#xff0c;但是对于卖家来说 每个货币都是无限的&#xff0c;题目中要我们求的是买到这个物品的最小交易的货币数&…

transformer - 注意力机制

Transformer 的注意力机制 Transformer 是一种用于自然语言处理任务的模型架构&#xff0c;依赖于注意力机制来实现高效的序列建模。注意力机制允许模型在处理一个位置的表示时&#xff0c;考虑输入序列中所有其他位置的信息&#xff0c;而不仅仅是前面的几个位置。这种机制能…

3.大模型高效微调PEFT

大模型高效微调(PEFT)技术 预训练模型的背景 预训练与微调:传统的微调方法通常涉及对整个预训练模型的参数进行再训练,以适应特定任务。这虽然有效,但计算成本高,且需要大量的标记数据。模型结构:像BERT或GPT这样的模型通常包含数亿甚至数十亿个参数,构成一个深层次的…

JWT 从入门到精通

什么是 JWT JSON Web Token&#xff08;JWT&#xff09;是目前最流行的跨域身份验证解决方案 JSON Web Token Introduction - jwt.ioLearn about JSON Web Tokens, what are they, how they work, when and why you should use them.https://jwt.io/introduction 一、常见会…

转型AI产品经理(6):“ 序列位置效应”如何应用在Chatbot产品中

序列位置效应是心理学中的一个记忆现象&#xff0c;指的是人们对一系列信息的记忆效果受到信息在序列中位置的影响。具体来说&#xff0c;人们通常更容易记住列表的开头和结尾部分的项目&#xff0c;而对中间部分的项目记忆较差。这个效应可以进一步分为“首因效应”和“近因效…

递归

特点&#xff1a;有一个初始状态&#xff1b;后续的情况可由前面的状态推出。&#xff08;斐波拉契&#xff0c;求阶乘&#xff09; 一 .写出分段函数&#xff08;有初值&#xff0c;递推关系&#xff09;可以递归 用if-else连接

Day47 代码随想录打卡|二叉树篇---最大二叉树

题目&#xff08;leecode T654&#xff09;&#xff1a; 给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建: 创建一个根节点&#xff0c;其值为 nums 中的最大值。递归地在最大值 左边 的 子数组前缀上 构建左子树。递归地在最大值 右边 的 …

java版多语言抢单系统 多语言海外AEON抢单可连单加额外单源码 抢单平台搭建开发 抢单开挂的软件

此套是全新开发的java版多语言抢单系统。 后端java&#xff0c;用的若依框架&#xff0c;这套代码前后端是编译后的&#xff0c;测试可以正常使用&#xff0c;语言繁体&#xff0c;英文&#xff0c;日语 源码大小&#xff1a;155M 源码下载&#xff1a;https://download.csd…

初识 java 2

1. idea 的调试 1. 点击鼠标左键设置断点 2.运行到断点处 点击 或点击鼠标右键&#xff0c;再点击 使代码运行到断点处&#xff0c;得到 2. 输出到控制台 System.out.println(value);//输出指定的内容&#xff0c;并换行 value 要打印的内容System.out.print(value);…

《精通ChatGPT:从入门到大师的Prompt指南》附录A:常用Prompt示例

附录A&#xff1a;常用Prompt示例 在《精通ChatGPT&#xff1a;从入门到大师的Prompt指南》的附录A中&#xff0c;我们将展示一系列常用的Prompt示例&#xff0c;帮助读者更好地理解和应用Prompt技术。每个示例将包含Prompt的描述、使用场景、预期结果以及实际输出。希望这些示…

Leetcode3040. 相同分数的最大操作数目 II

Every day a Leetcode 题目来源&#xff1a;3040. 相同分数的最大操作数目 II 解法1&#xff1a;记忆化搜索 第一步可以做什么&#xff1f;做完后&#xff0c;剩下要解决的问题是什么&#xff1f; 删除前两个数&#xff0c;剩下 nums[2] 到 nums[n−1]&#xff0c;这是一个…