【IoT NTN】3GPP R18中关于各类IoT设备在NTN中的增强和扩展

博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持!
博主链接

本人就职于国际知名终端厂商,负责modem芯片研发。
在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G技术研究。


博客内容主要围绕:
       5G/6G协议讲解
       高级C语言讲解
       Rust语言讲解



文章目录

  • 3GPP R18中关于各类IoT设备在NTN中的增强和扩展
    • NTN的定义
    • 一、3GPP Release 18主要增强的功能
    • 二、将NR NTN扩展到更高的频段
    • 三、UE移动性和服务连续性方面的增强
    • 四、通过网络验证终端位置的合规性
    • 五、改进IoT NTN性能
    • 六、NTN上物联网的核心和性能要求
    • 总结
  • 参考

3GPP R18中关于各类IoT设备在NTN中的增强和扩展

       3GPP R18协议对物联网连接领域进行了重大增强,特别是通过非地面网络(NTN)。此版本标志着LTE和NR标准第一次明确纳入了对NTN的支持,将IoT和eMTC设备的覆盖范围扩展到超出地面限制的范围。在R18中将重点关注利用卫星星座(从低轨到高轨道)和高空平台站(HAPS),为物联网设备建立弹性和无处不在的链路访问。

       这种整合对于确保跨不同地理环境的一致和可靠连接至关重要,包括传统网络基础设施服务不足的偏远和农村地区。技术论述将引导当前蜂窝技术适应NTN带来的独特挑战的复杂性,如延迟、频率偏移和卫星移动的动态性,为全球物联网通信的新时代奠定基础。

NTN的定义

       非地面网络(NTN)利用低地球轨道(LEO)、中地球轨道(MEO)和地球静止轨道(GEO)上的卫星,将连通性扩展到地面之外。近地轨道卫星最接近地球,提供低延迟,是时间敏感通信的理想选择。MEO卫星,部署在更远的地方,提供覆盖区域和延迟之间的平衡,适合导航和更广泛的通信。地球同步轨道卫星位于35786公里的赤道上空,确保对特定区域的连续覆盖,使它们成为广播和天气监测的完美选择。
       3GPP的非地面网络(NTN)计划将彻底改变卫星通信,特别是通过定位在600公里以上的近地轨道卫星和静止的地球同步轨道卫星。为实现符合3GPP NTN框架的卫星通信系统,提出了一种创新的结构设计。通常,从卫星到地面核心网的通信是通过连接到卫星地面站的馈线链路进行的。然后,这种设置通过专用服务链路将通信功能扩展到单个用户设备。
请添加图片描述
       上图说明了利用低地球轨道(LEO)和地球静止轨道(GEO)卫星的非地面网络(NTN)的通信框架。物联网设备通过5G NB-IoT用户链路与低轨卫星连接,低轨卫星能够通过星间链路直接转发数据。这些卫星还与地球同步轨道卫星相连,后者覆盖范围更广。数据流通过馈线连接到地面站,从而方便与因特网连接。该基础设施受益于3GPP R18的增强功能,增强了电源效率,实现了更好的移动性支持,并优化了信令,以获得更可靠和高效的物联网通信体验。


一、3GPP Release 18主要增强的功能

       在3GPP R18中,增强是针对优化非地面网络(NTN)上的物联网操作,重点是效率、覆盖和性能:

  • 支持FDD频段的半双工:R18中,NTN上的物联网设备预计将支持半双工操作,节省电力,并简化设备设计;
  • UE位置合规性:R18强调了UE位置网络验证的重要性,以满足监管标准,确保准确可靠的位置报告;
  • 增强物联网设备的移动性:基于R17的移动性进行增强,测量协议将得到增强,以防止无线链路故障并支持移动性,特别是针对eMTC设备;
  • 吞吐量改进:通过潜在禁用下行链路的HARQ反馈来解决HARQ停顿问题,以提高物联网NTN的性能,特别是吞吐量方面;
  • 优化GNSS:将优化GNSS的使用效率,允许更长的连接,而不需要不断调整GNSS,从而节省物联网设备的电池寿命;
  • 核心和性能要求规范:RF、RRM和解调要求,在R17中未指定,将在R18中详细说明,以支持NTN上的NB-IoT和eMTC操作。

二、将NR NTN扩展到更高的频段

       在3GPP R18中,NR NTN战略性扩展到10ghz以上的频率,特别是Ka频段,通过非地面信道为物联网和移动宽带业务带来了革命性的发展。此举主要是为了增强VSAT设备的能力,使其能够支持各种平台的宽带数据服务,包括海上、空中和地面车辆。向Ka波段的转变带来了一些技术挑战和机遇。其中一个主要挑战是由于大气条件导致的信号衰减增加,这在这些较高的频率上更为明显。这就需要发展先进的天线技术和自适应调制方案,以确保可靠的信号传输和接收。更高的频率也允许更窄的波束宽度,从而更集中和有效地利用频谱,但需要更精确的波束转向和管理。

       对于VSAT终端,Ka波段提供了更高数据速率和增强网络容量的潜力。这对于需要大量带宽的应用程序至关重要,例如高清视频流、大规模数据传输和实时通信服务。然而,在Ka波段实施这些系统需要仔细考虑功率要求、天线设计和热管理,以保持最佳性能。

       主要的宽带卫星供应商向固定的、可重新定位的用户设备提供服务。地球同步轨道卫星以较少的单元提供广泛的覆盖范围,相对于地球保持静止,不像低轨道卫星移动迅速,需要持续跟踪。然而,低轨道卫星提供更低的延迟、更高的吞吐量,因为它们靠近地球,并且以更小的波束尺寸提供更大的容量可扩展性,尽管这需要更多的卫星来保持覆盖和服务质量。

       目前的卫星频谱分配范围从1.5 GHz到51.4 GHz,包括L、S、C、Ku和Ka频段。
请添加图片描述
       下表概述了各种卫星供应商及其卫星系统和所使用的频谱:

运营商部署的卫星系统频谱
Space X (Starlink)12000+ (3580)Ku-band
OneWeb648 (542)Ku-band
Kuiper3236 (0)Ka band
Telesat188 (2)C, Ku, Ka bands
Echostar10 GEO (10)Ku, Ka, S bands
HughesNet3 GEO (2)Ka band

       此外,更高频段的使用为NTN场景下的网络设计和部署开辟了新的可能性。它允许在给定的频谱空间内容纳更多的用户,从而提高整体网络效率和用户体验。将这些高频频段集成到5G NTN框架中,证明了5G功能的持续发展,努力提供无处不在的高速连接,而不受地理和环境限制。


三、UE移动性和服务连续性方面的增强

       3GPP R18中,在增强用户设备(UE)移动性和服务连续性方面取得了重大进展,特别是在非地面网络(NTN)中。这些增强对于在NTN动态环境中保持无缝连接至关重要,因为卫星移动和可变信号延迟等因素构成了独特的挑战。该版本的主要增强包括设计用于切换和小区重选择的复杂算法。这些算法旨在对卫星位置的快速变化做出高度响应,确保UE可以在不中断服务的情况下在小区之间快速切换。这对于保持LEO、MEO和GEO卫星系统中一致的通信链路尤其重要,因为这些卫星与地球表面的相对位置经常变化。

       另一个重点领域是跟踪区域更新的增强。随着卫星的移动,它们所支持的小区的覆盖范围也在移动。更新的跟踪区域管理确保终端始终连接到适当的小区,提高了网络的整体可靠性。此外,还有完善的信号测量和评估协议,使终端用户能够更准确地决定何时启动切换。

       此外,增强功能解决了地面和NTN小区之间的业务连续性问题。这包括优化传输流程,确保终端可以在不同类型的网络之间无缝切换。这对于需要不间断连接的应用至关重要,例如应急服务、关键基础设施监控和某些工业物联网应用。

       R18的重点是提高NTN环境中的终端移动性和服务连续性,这表明3GPP致力于解决非地面通信的独特挑战,为更强大和可靠的移动网络铺平道路。


四、通过网络验证终端位置的合规性

       在3GPP第18版中,通过对用户设备(UE)位置进行精确的网络验证来满足法规遵从性是一个重要的重点。这涉及到网络验证和报告终端位置的能力,这对于紧急呼叫、合法拦截、公共警告和准确可靠的计费流程至关重要。下表给出了终端位置验证需求概述:

服务精度可靠性延迟
紧急电话水平方向 50m ,垂直方向 3m提供可靠的UE定位快速定位,不延迟呼叫建立过程
合法监听(LI)映射到具有小区ID粒度的物理位置UE生成的位置信息必须是可验证的不应损害LI服务
公众告警服务 (PWS)目标警报的宏小区大小粒度法规中隐含但未明确规定的不应该显著影响PWS分发
收费及收费通知书了解UE的上下文,以便准确计费移动运营商必须确认终端位置不应该影响收费服务
所有受规管服务保护用户位置数据允许其用于安全、预防犯罪和法规遵从性N/A

       对于紧急呼叫,最严格的精度要求是:水平50米,垂直3米,与主要监管机构保持一致。可靠的位置信息对于及时的协助也是至关重要的,不能延迟呼叫建立。合法的拦截需要明确的逻辑位置到物理位置的映射,通常是基于小区ID来检测过境点。公共警报服务可能利用蜂窝广播来发出特定区域的警报,它依赖于与蜂窝大小粒度相对应的可靠位置信息。最后,准确的UE上下文对于适当的收费和资费通知至关重要。在所有服务中,隐私和自动决策法规都需要保护用户位置数据,允许其用于安全、预防犯罪和法规遵从性。

       该系统现在必须应对由非地面网络(NTN)引入的额外复杂性,例如更长的信号延迟和不断变化的卫星位置。考虑到NTN的高延迟和动态性,实现了改进的算法来计算准确的UE位置。这确保了符合严格的定位准确性和可靠性监管要求,特别是在关键通信场景中。


五、改进IoT NTN性能

       在3GPP R18中,物联网性能在非地面网络(NTN)上的增强专注于解决关键挑战,如HARQ停滞。由于NTN固有的长往返时间,这个问题在NB-IoT和eMTC中尤其明显。为了缓解这种情况,人们正在研究禁用下行数据传输的HARQ反馈等策略。这种方法有望显著提高吞吐量。此外,正在优化全球导航卫星系统(GNSS)的运行。这些改进旨在促进稀疏的GNSS使用,同时保持高效的功耗,确保NTN环境中物联网设备的长期连接。


六、NTN上物联网的核心和性能要求

       3GPP R18定义并完成了非地面网络(NTN)上的物联网操作的核心和性能要求,这方面在之前的版本中没有完全规定。这包括详细说明NTN环境下NB-IoT和eMTC操作的射频(RF)、无线电资源管理(RRM)和解调要求。这些规范对于确保物联网设备在NTN的独特条件下保持一致和可靠的性能至关重要,包括信号传播特性、功率效率参数,以及NTN环境特有的可变延迟和连接场景的处理。

总结

       3GPP R18是物联网连接的一个关键进展,包括非地面网络(NTN),将设备的覆盖范围扩展到地面以外。主要的改进包括对FDD频段的半双工支持,以节省电能,改进的移动协议以确保NTN动态中的服务连续性,以及吞吐量优化以解决NB-IoT和eMTC中的HARQ停顿问题。至关重要的是,第18版还强调了法规遵从性,为紧急服务、公共警告和计费提供了准确的UE位置验证。这种合规性与先进的算法相结合,以克服NTN的挑战,如更长的信号延迟和卫星移动性。此外,第18版将确定NTN上物联网的核心RF、RRM和解调要求,确保设备在可变的NTN条件下的可靠性能。这些增强体现了对健壮、可靠和符合监管的移动网络的承诺,利用NTN来开启全球物联网通信的新时代。



参考

  • 3GPP TR 38.821, Solutions for NR to support Non-Terrestrial Networks (NTN)
  • 3GPP TR 38.882, Study on requirements and use cases for network verified UE location for Non-Terrestrial-Networks (NTN) in NR (Release 18)


在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/695171.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

动态路由协议RIP(思科、华为)

#交换设备 动态路由协议RIP 路由协议 静态路由 需要管理员手动配置 动态路由 是在路由器上启用某动态路由协议,进行自己直连网段的宣告,从而相邻的路由器就可以学习的相邻的路由器所宣告的网段,每一台路由器都把自己直连的网段宣告出去&am…

LINUX网络FTP服务

一、FTP服务 FTP服务:file transfer protocol :文件传输协议。在网络上进行双向传输,也是一个应用程序。不同的操作系统有不同的FTP软件,但使用的协议是一样的。 FTP协议基于TCP协议,有两个端口,即20和21。 20端口&…

《大道平渊》· 拾壹 —— 商业一定是个故事:讲好故事,员工奋发,顾客买单。

《大道平渊》 拾壹 "大家都在喝,你喝不喝?" 商业一定是个故事,人民群众需要故事。 比如可口可乐的各种故事。 可口可乐公司也只是被营销大师们, 作为一种故事载体,发挥他们的本领。 营销大师们开发故事…

《精通ChatGPT:从入门到大师的Prompt指南》第11章:Prompt与AI的未来

第11章:Prompt与AI的未来 11.1 技术发展的新方向 在迅速发展的人工智能领域,Prompt工程作为与AI模型交互的核心方式,正处于技术创新的前沿。未来几年,Prompt工程将沿着多个新方向发展,这些方向不仅会改变我们与AI互动…

SOA的设计模式_2.企业服务总线模式

1.企业服务总线(|Enterprise Service Bus,ESB) 在企业基于SOA实施EAI、B2B和BMP的过程中,如果采用点对点的集成方式存在着复杂度高,可管理性差,复用度差和系统脆弱等问题。企业服务总线(…

(南京观海微电子)——温度对TFT影响及改善方式

温度如何损坏 LCD? 这个工作温度范围会影响设备内的电子部分,超出范围会导致 LCD 技术在高温下过热或在寒冷时变慢。 至于液晶层,如果放在高温下,它会变质,导致它和显示器本身出现缺陷。 LCD 温度限制: 什…

架构设计-加密解决的基本工具方法

软件工程实施过程中,经常会用到加密解密相关的工具类,整理如下: import sun.misc.BASE64Decoder; import sun.misc.BASE64Encoder;import javax.crypto.Cipher; import java.security.*; import java.security.interfaces.RSAPrivateKey; imp…

开发做前端好还是后端好?

目录 一、引言 二、两者的对比分析 技能要求和专业知识: 职责和工作内容: 项目类型和应用领域: 就业前景和市场需求: 三、技能转换和跨领域工作 评估当前技能: 确定目标领域: 掌握相关框架和库&a…

Vue3【十三】watch监视

Vue3【十三】watch监视 Vue3 中的watch祝你能监视以下四种数据 ref 定义的数据reactive定义的数据函数返回一个值一个包含上述内容的数组 案例截图 目录结构 案例代码 Person.vue <template><div class"person"><!-- <h1>Watch情况1&#xff…

Channels无法使用ASGI问题

Django Channels是一个基于Django的扩展, 用于处理WebSockets, 长轮询和触发器事件等实时应用程序. 它允许Django处理异步请求, 并提供了与其他WebSockets库集成的功能.当我们在Django Channels中使用ASGI_APPLICATION设置时, 我们可以指定一个新的ASGI应用程序来处理ASGI请求.…

Transformer动画讲解:Softmax函数

暑期实习基本结束了&#xff0c;校招即将开启。 不同以往的是&#xff0c;当前职场环境已不再是那个双向奔赴时代了。求职者在变多&#xff0c;HC 在变少&#xff0c;岗位要求还更高了。提前准备才是完全之策。 最近&#xff0c;我们又陆续整理了很多大厂的面试题&#xff0c…

数据结构之线性表(1)

数据结构之线性表 1.线性表的定义 线性表是一种线性结构。在一个线性表中数据元素的类型是相同的&#xff0c;或者说线性表是由同一类型的数据元素构成的线性结构。 线性表是具有相同数据类型的n&#xff08;n>0&#xff09;个数据元素的有限序列。 n表示表长&#xff0c;…

45.django - 开始建立第一个项目

1.django是什么&#xff1f; Django是一个高级的、免费的、开源的Web应用框架&#xff0c;它由Python编程语言编写而成。Django遵循模型-视图-控制器&#xff08;MVC&#xff09;的设计模式&#xff0c;但通常将其称为模型-视图-模板&#xff08;MVT&#xff09;架构。它的主要…

数据交换平台_10_activatemq 中间件容错性测试

目录概要 3. 容错测试: - 模拟ActiveMQ在异常情况下的表现,如网络中断、节点故障等。 - 观察ActiveMQ的容错机制是否能够正确处理异常情况,保证消息的可靠传输。 - 根据容错测试结果,优化ActiveMQ的容错机制,确保系统在面对异常情况时能够正确处理并恢复。 设计: 容错测…

python实现将excel数据指保存到word表格中

准备一个excel表格 上代码&#xff1a; import openpyxl from docx import Document# 读取Excel文件 excel_file 大学名次.xlsx wb openpyxl.load_workbook(excel_file) ws wb.active# 获取Excel文件中的所有工作表名称 sheet_names wb.sheetnames# 遍历每个工作表&#x…

5.1 实体完整性

一个表只能有一个主键约束&#xff0c;且主键约束不能取空值。 通过unique约束定义唯一性&#xff0c;为了保证一个表非主键列不输入重复值&#xff0c;可在该列定义unique约束。 primary key约束与unique约束主要区别如下。 (1)一个表只能创建一个primary key约束&#xff0…

redis windos修复版本

遇到的问题: Django的channel插件连接安装在windows上的redis报错: unknown command BZPOPMIN, channels-redis版本和redis不兼容导致.解决方案: 更新Redis版本. 微软官方维护的 Redishttps://github.com/microsoftarchive/redis/releases 2016年后就不更新了, 版本停留在了3.x…

Golang-编码加密-Xor(GG)

go语言环境搭建 Golang学习日志 ━━ 下载及安装_golang下载-CSDN博客 go run xxx.go go build xxx.go 首先,cs.msf生成比特流数据. 放入xor,py脚本中进行xor加密. xor.py def xor(shellcode, key):new_shellcode ""key_len len(key)# 对shellcode的每一位进行…

Hive日志介绍

日志描述 日志路径&#xff1a;Hive相关日志的默认存储路径为“/var/log/Bigdata/hive/角色名”&#xff0c;Hive1相关日志的默认存储路径为“/var/log/Bigdata/hive1/角色名”&#xff0c;以此类推。 HiveServer&#xff1a;“/var/log/Bigdata/hive/hiveserver”&#xff0…

使用贝塞尔曲线实现一个iOS时间轴

UI效果 实现的思路 就是通过贝塞尔曲线画出时间轴的圆环的路径&#xff0c;然后 使用CAShaper来渲染UI&#xff0c;再通过 animation.beginTime [cilrclLayer convertTime:CACurrentMediaTime() fromLayer:nil] circleTimeOffset 来设置每个圆环的动画开始时间&#xff0c; …