【RAG入门教程01】Langchian框架 v0.2介绍

LangChain 是一个开源框架,旨在简化使用大型语言模型 (LLM) 创建应用程序的过程。可以将其想象成一套使用高级语言工具进行搭建的乐高积木。

它对于想要构建复杂的基于语言的应用程序而又不必管理直接与语言模型交互的复杂性的开发人员特别有用。它简化了将这些模型集成到应用程序中的过程,使开发人员能够更加专注于应用程序逻辑和用户体验。

LLMs

“LLM” 代表“大型语言模型”,这是一种旨在大规模理解、生成和与人类语言交互的人工智能模型。这些模型在大量文本数据上进行训练,可以执行各种与语言相关的任务。

这些模型最初通过识别和解释单词与更广泛概念之间的关系来建立基础理解。这一初始阶段为进一步的微调奠定了基础。微调过程涉及监督学习,其中使用有针对性的数据和特定反馈对模型进行微调。此步骤可提高模型在各种情况下的准确性和相关性。

Transformer

训练数据通过一种称为 Transformer 的专门神经网络架构进行处理。这是大型语言模型 (LLM) 开发的关键阶段。

从非常高层次的概述来看,编码器处理输入数据(例如一种语言的句子)并将信息压缩为上下文向量。然后解码器获取此上下文向量并生成输出(例如将句子翻译成另一种语言)。
编码器-解码器

编码器和解码器具有“自注意力”机制,这使得模型可以对输入数据的不同部分的重要性赋予不同的权重。
自注意力机制

自注意力机制让模型在处理特定单词或短语时能够关注输入文本的不同部分。对于每个单词,模型会评估句子中所有其他单词与其的相关性,并为这些关系分配权重。这些权重有助于模型更全面地理解句子结构和含义,从而生成更准确、更符合语境的回复或翻译。

大模型(LLM)

  1. 专有模型:这些是由公司开发和控制的 AI 模型。它们通常提供高性能,并得到大量资源和研究的支持。然而,它们的使用成本可能很高,可能具有限制性许可证,并且其内部工作原理通常不透明(闭源)。
  2. 开源模型:相比之下,开源 AI 模型可供任何人免费使用、修改和分发。它们促进社区内的协作和创新,并提供更大的灵活性。然而,它们的性能可能并不总是与专有模型相匹配,而且它们可能缺乏大公司提供的广泛支持和资源。

这些模型之间的选择涉及性能、成本、易用性和灵活性方面的权衡。开发人员必须决定是选择可能更强大但限制更多的专有模型,还是更灵活但可能不够完善的开源替代方案。这一选择反映了软件开发中早期的决策点,例如 Linux 所呈现的决策点,标志着 AI 技术及其可访问性发展的重要阶段。

Langchain

Langchain 有助于访问和合并来自各种来源(例如数据库、网站或其他外部存储库)的数据到使用 LLM 的应用程序中。

VectorStore向量存储

它将文档转换为向量存储。文档中的文本被转换为称为向量的数学表示,向量的表示称为嵌入。

当 Langchain 处理文档时,它会为文本内容生成嵌入。

从文档创建的嵌入填充了 Vector Store。文档中的每段文本都表示为该存储中的一个向量(嵌入)。因此,Vector Store 成为这些嵌入的存储库,以数学和语义丰富的格式表示原始文档的内容。

当您有“Transformer 是什么?”这样的问题时,大型语言模型 (LLM) 首先会将此问题转换为嵌入。这意味着 LLM 将问题转换为与存储在向量存储中的数据相同的向量格式。此转换可确保问题和存储的信息具有可比的格式。

现在问题已变成向量格式,LLM 可以有效地搜索向量存储。此查询过程的核心是相似性搜索。LLM 评估问题的向量与向量存储中的每个向量的相似程度。

进行相似性搜索后,LLM 会识别向量库中与问题向量最相似的向量。然后,这些向量会被重新翻译成文本形式,从而检索出与问题最相关、最相似的信息。

组件

Langchain 提供各种组件,使得在不同应用环境中集成和管理模型变得更加容易。
组件

  • 文档加载器是旨在简化从各种来源导入和处理文本数据的实用程序。
  • 文档转换器对文本数据进行各种转换,使其格式更有利于大型语言模型 (LLM) 进行分析和处理。
  • 文本嵌入模型专注于将文本数据转换为嵌入。
  • 向量存储作为用于存储和管理嵌入的专用数据库。
  • 检索器旨在根据给定的查询从向量存储中有效地检索相关信息。
  • 工具执行特定任务和操作。例如,Bing 搜索工具是一个 API,用于将 Bing 搜索与 LLM 结合使用。
  • 代理代表一种高级抽象,用于协调不同 Langchain 组件与最终用户之间的交互。它充当 LLM 和工具之间的中介,处理用户查询,使用 Langchain 中的适当模型和工具进行处理,然后将结果返回给用户。
  • 记忆组件提供了一种记住和参考过去的交互或信息的机制。
  • 通过将 LLM 可以执行的各种任务链接在一起,有助于构建多步骤工作流或流程。此组件允许按顺序执行不同的语言任务,例如信息检索,然后是文本摘要或问答。通过创建这些任务链,Langchain 可以与 LLM 进行更复杂、更细致的交互和操作。
  • Langchain 的LLM和聊天模型组件提供了一个框架,用于在应用程序内集成和管理各种大型语言模型(LLM),包括专门的聊天模型。
  • 提示解析器简化了模型的输入和输出。

LangChain 的核心组件

  1. 模型 I/O 封装
    • LLMs:大语言模型
    • Chat Models:一般基于 LLMs,但按对话结构重新封装
    • PromptTemple:提示词模板
    • OutputParser:解析输出
  2. 数据连接封装
    • Document Loaders:各种格式文件的加载器
    • Document Transformers:对文档的常用操作,如:split, filter, translate, extract metadata, etc
    • Text Embedding Models:文本向量化表示,用于检索等操作
    • Verctorstores: (面向检索的)向量的存储,保存了向量索引以及文档信息
    • Retrievers: 向量的检索
  3. 记忆封装
    • Memory:这里不是物理内存,从文本的角度,可以理解为“上文”、“历史记录”或者说“记忆力”的管理
  4. 架构封装
    • Chain:实现一个功能或者一系列顺序功能组合
    • Agent:根据用户输入,自动规划执行步骤,自动选择每步需要的工具,最终完成用户指定的功能
    • Tools:调用外部功能的函数,例如:调 google 搜索、文件 I/O、Linux Shell 等等
    • Toolkits:操作某软件的一组工具集,例如:操作 DB、操作 Gmail 等等
  5. Callbacks
  • 功能模块:https://python.langchain.com/docs/get_started/introduction
  • API 文档:https://api.python.langchain.com/en/latest/langchain_api_reference.html
  • 三方组件集成:https://python.langchain.com/docs/integrations/platforms/
  • 官方应用案例:https://python.langchain.com/docs/use_cases
  • 调试部署等指导:https://python.langchain.com/docs/guides/debuggin

langchain v0.2升级

langchain v0.2导入方式发生了变化,具体模块可以参考以下API文档

https://api.python.langchain.com/en/latest/langchain_api_reference.html

使用前用下面命令进行安装:

pip install langchain
pip install langchain-core
pip install langchain-text-splitters
pip install langchain-huggingface
pip install langchain_openai==0.1.8


迁移文档:https://python.langchain.com/v0.2/docs/versions/v0_2/

参考资料

  • LangChain框架介绍
  • LangChain in Chains #1: A Closer Look

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/694234.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python第二语言(七、Python模块)

目录 1. 什么是模块 2. 基本语法 2.1 模块的导入方式 2.2 基本语法 import 模块名 2.3 基本语法 from 模块名 import 功能名 2.4 基本语法as 别名 3. 自定义模块 4. 调用自定义模块时,如何让其模块中的函数不被调用(__name__) 5. 调…

springboot 3 oauth2认证this.authorizationService.save(authorization)生成token报错异常

springboot 3 oauth2认证this.authorizationService.save(authorization)生成token报错异常&#xff0c;使用springboot版本3.3.0。 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId>&…

【Qt】软件打包

1.qt 打包 1.1 修改APP图标 在*.pro中最下面添加RC_ICONS logo.ico注意&#xff1a;logo.ico为图片名称 效果&#xff1a; 1.2 打包文件 将包含exe文件的copy到自己打包文件夹 修改release构建目录 找到构建工程的构建 release 版本 构建&#xff0c;保险起见构建完编译…

家庭电脑私网如何访问阿里云服务器的指定端口

这里我们以在阿里云服务器上部署一个redis server 服务&#xff0c;对外开放6379端口为例子&#xff0c;其他端口类似。 1.获取当前电脑主机对应的公网IP, 可以https://tool.lu/ip/通过这个网站拿到。 2.阿里云服务器控制台设置防火墙&#xff0c;如下图所示&#xff0c;直接添…

基于关键词自动采集抖音视频排名及互动数据(点赞、评论、收藏)

在当今的社交媒体时代&#xff0c;抖音作为一个热门短视频平台&#xff0c;吸引了大量用户和内容创作者。对于研究和分析抖音上的热门视频及其互动数据&#xff08;如点赞、评论、收藏等&#xff09;&#xff0c;自动化的数据采集工具显得尤为重要。本项目旨在开发一个基于关键…

【C语言】Leetcode-312 戳气球

文章目录 题目思路代码如下 题目 链接: Leetcode-312 戳气球 思路 我们观察戳气球的操作&#xff0c;发现这会导致两个气球从不相邻变成相邻&#xff0c;使得后续操作难以处理。于是我们倒过来看这些操作&#xff0c;将全过程看作是每次添加一个气球。 首先 我们需要创建一个…

【ArcGISProSDK】 读取多面体信息并导出XML

结果展示 代码 using ArcGIS.Core.CIM; using ArcGIS.Core.Data; using ArcGIS.Core.Data.DDL; using ArcGIS.Core.Geometry; using ArcGIS.Core.Internal.CIM; using ArcGIS.Desktop.Catalog; using ArcGIS.Desktop.Core; using ArcGIS.Desktop.Editing; using ArcGIS.Deskto…

一文学习yolov5 实例分割:从训练到部署

一文学习yolov5 实例分割&#xff1a;从训练到部署 1.模型介绍1.1 YOLOv5结构1.2 YOLOv5 推理时间 2.构建数据集2.1 使用labelme标注数据集2.2 生成coco格式label2.3 coco格式转yolo格式 3.训练3.1 整理数据集3.2 修改配置文件3.3 执行代码进行训练 4.使用OpenCV进行c部署参考文…

网络通讯协议UDP转发TCP工具_UdpToTcpRelay

网络通讯协议UDP转发TCP工具_UdpToTcpRelay 本程序旨在提供一个灵活的、可配置的服务&#xff0c;它处理特定的UDP端口以接收命令&#xff0c;然后将这些命令转换为TCP命令并通过网络发送到指定的TCP服务器【TCP支持十六进制和ASCII】。 此设计特别适用于需要远程控制或自动化…

智慧互联网医院系统开发指南:从源码到在线问诊APP

近期&#xff0c;互联网医院系统的热度非常高&#xff0c;很多人跟小编提问如何开发&#xff0c;今天小编将从零开始为大家详解互联网医院系统源码&#xff0c;以及在线问诊APP开发技术。 一、需求分析与系统设计 1.1 需求分析 用户管理 预约挂号 在线问诊 电子病历 药品…

车载电子电气架构 --- 车载信息安全

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…

手写kNN算法的实现-用余弦相似度来度量距离

设a为预测点&#xff0c;b为其中一个样本点&#xff0c;在向量空间里&#xff0c;它们的形成的夹角为θ&#xff0c;那么θ越小&#xff08;cosθ的值越接近1&#xff09;&#xff0c;就说明a点越接近b点。所以我们可以通过考察余弦相似度来预测a点的类型。 from collections i…

群体优化算法----树蛙优化算法介绍以及应用于资源分配示例

介绍 树蛙优化算法&#xff08;Tree Frog Optimization Algorithm, TFO&#xff09;是一种基于群体智能的优化算法&#xff0c;模拟了树蛙在自然环境中的跳跃和觅食行为。该算法通过模拟树蛙在树枝间的跳跃来寻找最优解&#xff0c;属于近年来发展起来的自然启发式算法的一种 …

k8s挂载配置文件(通过ConfigMap方式)

一、ConfigMap简介 K8s中的ConfigMap是一种用于存储配置数据的API对象&#xff0c;属于Kubernetes中的核心对象。它用于将应用程序的配置信息与容器镜像分离&#xff0c;以便在不重新构建镜像的情况下进行配置的修改和更新。ConfigMap可以存储键值对、文本文件或者以特定格式组…

前后端分离

简要介绍 【【2020版】4小时学会Spring BootVue前后端分离开发】https://www.bilibili.com/video/BV137411B7vB?vd_source63e3491e19d2e508b4778a57ebd65ccf 传统模式 前后端分离 前端&#xff1a;负责数据应用和用户交互 后端&#xff1a;负责数据处理接口 前端HTML--&g…

【内网攻防实战】红日靶场(一)续篇_金票与银票

红日靶场&#xff08;一&#xff09;续篇_权限维持 前情提要当前位置执行目标 PsExec.exe拿下域控2008rdesktop 远程登录win7msf上传文件kail回连马连上win7upload上传PsExec.exe PsExec.exe把win7 带到 2008&#xff08;域控hostname&#xff1a;owa)2008开远程、关防火墙Win7…

GPT-4欺骗人类的惊人成功率达99.16%!

PNAS重磅研究揭示&#xff0c;LLM推理能力越强欺骗率越高&#xff01;&#xff01; 此前&#xff0c;MIT的研究发现&#xff0c;AI在各类游戏中为了达到目的&#xff0c;不择手段&#xff0c;学会用佯装和歪曲偏好等方式欺骗人类。 GPT-4o深夜发布&#xff01;Plus免费可用&…

五个避免的管理错误:提升团队绩效与发展

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

【Java SE】字符串常量池详解,什么情况下字符串String对象存在常量池,通过==进行判断,字符串创建及截取后是否同一个对象

复习字符串创建方式 字符串的31种构造方法 public String();创建一个空白字符串&#xff0c; 不含有任何内容public String(char[] array);根据字符数组的内容&#xff0c;来创建对应的字符串public String(byte[] array);根据字节数组的内筒&#xff0c;来创建对应的字符串 …

Win10下CodeBlock实现socket TCP server/client

文章目录 1 安装codeblock2 适配libws2_32.a库3 TCP socket工作原理4 代码实现服务端客户端5 运行效果1 安装codeblock 官方免费下载 值得一提的是,安装时,指定安装路径,其他默认安装即可 2 适配libws2_32.a库 默认安装,只有3个库,如果编译socket,需要专门的库libws2…