【网络编程开发】8.TCP连接管理与UDP协议 9.IP协议与ethernet协议

8.TCP连接管理与UDP协议

三次握手

三次握手的过程在TCP/IP网络通信中起着至关重要的作用,它不仅确保了数据的可靠传输,还为两端的数据传输提供了稳定的连接初始化过程。这一过程涉及到几个关键步骤,每个步骤都有其特定的目的和功能。

在这里插入图片描述

步骤

  1. 初始化:B 的 TCP 服务器进程先创建传输控制块 TCB,准备接受客户进程的连接请求。
  2. 第一次握手
    • A 的 TCP 向 B 主动发出连接请求报文段,其包头中的同步位 SYN = 1,并选择序号 seq = x,表明传送数据时的第一个数据字节的序号是 x。
    • 注意:TCP规定,SYN 报文段(即SYN = 1的报文段)不能携带数据,但要消耗掉一个序号。
    • 通过这一步,服务器知道了客户端具有发送数据的能力,但此时服务器还未确认自己能够接收和发送数据到客户端。
  3. 第二次握手
    • B 的 TCP 收到连接请求报文段后,如同意,则发回确认。
    • B 在确认报文段中应使 SYN = 1,使 ACK = 1,其确认号 ack = x + 1,自己选择的序号 seq = y。
    • 这个报文段也不能携带数据,但同样要消耗掉一个序号。
    • 通过这一步,客户端确认了服务器既能接收数据也能发送数据。
  4. 第三次握手
    • A 收到此报文段后向 B 给出确认,其 ACK = 1,确认号 ack = y + 1。
    • A 的 TCP 通知上层应用进程,连接已经建立。
    • TCP 标准规定:ACK 报文段可以携带数据。
      但如果不携带数据,则不消耗序号。下一个数据报文段的序号仍是 seq = x + 1。
    • 这一步完成了整个握手过程,现在服务器知道客户端既能接收数据也能发送数据。只有当服务器收到这个最后的ACK包时,连接才算正式建立,随后双方可以开始数据传输。
  5. 数据开始传输:B 的 TCP 收到主机 A 的确认后,也通知其上层应用进程:TCP 连接已经建立。双方可以开始数据传送。

四次挥手

四次挥手过程是TCP连接释放的核心机制,它确保了数据传输的完整性和可靠性。在网络通信中,TCP(传输控制协议)提供可靠的、面向连接的服务,确保数据在互联网中的准确传输。这一过程中,“四次挥手”是TCP协议关闭连接的一个重要环节,它涉及客户端和服务器之间的数据交换确认,确保双方都没有数据传输后,才正式关闭连接。

在这里插入图片描述

TCP四次挥手的过程具体如下:

  1. 第一次挥手:当一端(通常是客户端)完成数据发送后,会向另一端(服务器)发送一个FIN报文,试图关闭这一方向的连接。此时,客户端不再发送数据,但可以接受数据。
    • A 的应用进程先向其 TCP 发出连接释放报文段,并停止再发送数据,主动关闭 TCP 连接。
    • A 把连接释放报文段首部的 FIN = 1,其序号seq = u,等待 B 的确认。
    • TCP规定:FIN 报文段即使不携带数据,也消耗掉一个序号。
  2. 第二次挥手:另一端(服务器)收到这个FIN报文后,会发送一个ACK报文作为响应,确认序号ack为收到的序号加1,表明已经接收到客户端的关闭请求,此时服务器还可以继续发送数据。
    • B 发出确认,ACK=1,确认号 ack = u+1,这个报文段的序号 seq = v。
    • TCP 服务器进程通知高层应用进程。
    • 从 A 到 B 这个方向的连接就释放了,TCP 连接处于半关闭 (half-close) 状态。B 若发送数据,A 仍要接收。
  3. 第三次挥手:当服务器也没有数据需要发送时,同样会发送一个FIN报文给客户端,表示自己也准备关闭连接。
    • 若 B 已经没有要向 A 发送的数据,其应用进程就通知 TCP 释放连接。
    • FIN=1,ACK=1,确认号 ack = u+1。
  4. 第四次挥手:客户端收到来自服务器的FIN报文后,会发送ACK报文进行确认,ack序列号设为收到的序号加1。此后,客户端进入TIME_WAIT状态,等待2MSL(最大段生存时间)以确保对方正确接收到了ACK报文。之后,客户端也会关闭连接。
    • A 收到连接释放报文段后,必须发出确认。
    • ACK=1,确认号 ack=w+1,自己的序号 seq = u + 1

保活计时器

  • 用来防止在 TCP 连接出现长时期空闲。

  • 通常设置为 2 小时 。

  • 若服务器过了 2 小时还没有收到客户的信息,它就发送探测报文段。

  • 若发送了 10 个探测报文段(每一个相隔 75 秒)还没有响应,就假定客户出了故障,因而就终止该连接。

9.IP协议与ethernet协议

IP 数据报首部的固定部分中的各字段

在这里插入图片描述

  1. 版本(Version):这个字段占4位,用于标识IP数据报遵循的IP协议版本。常见的版本有IPv4(0100)和IPv6(0110)。版本字段确保了与相应IP版本的兼容性。
  2. 首部长度(Header Length):用4位表示,说明IP数据报首部的长度。由于单位是4字节,首部长度的最大值为60字节。通常首部长度为20字节,这适用于大多数情况。
  3. 服务类型(Type of Service):占8位,旧称服务类型(Service Type),在现代网络中被称为区分服务(Differentiated Services)。该字段用于处理特殊服务要求,如低延迟、高可靠性等。
  4. 总长度(Total Length):总长度字段为16位,表明整个IP数据报的长度,包括首部和数据载荷。其单位为字节,因此数据报的最大长度可达65535字节。这个字段对于确定数据报的大小及是否需要分片至关重要。
  5. 标识(Identification):这是一个16位的字段,用于唯一标识一个IP数据报。相同的标识值意味着分片来源于同一个IP数据报。这在分片后的重组过程中是必不可少的。
  6. 标志(Flags):占3位,其中关注最多的是最后两位。最低位是MF(More Fragments),若设置为此位,则表示后面还有更多分片。中间位是DF(Don’t Fragment),若设置为此位,则不允许对该数据报进行分片处理。
  7. 片偏移(Fragment Offset):这个13位的字段指示分片相对于原始数据报的偏移量,以8字节为单位。这对于接收端正确重组分片非常重要。
  8. 生存时间(Time to Live, TTL):占8位,用于设置数据报可以经过的最多路由器数。每经过一个路由器,TTL减1,当TTL减至0时,数据报被丢弃,从而防止数据报在网络中无限循环。
  9. 协议(Protocol):此8位字段表明数据报的数据部分使用的协议类型,例如TCP、UDP或ICMP。
  10. 首部检验和(Header Checksum):这个16位的字段仅对数据报的首部进行错误检查,保证首部的正确性。数据部分的错误检测由更高层的协议负责。

此外,还有源IP地址和目标IP地址字段,各占4字节。这两个字段分别指定了发送数据报的主机和数据报目的地的IP地址。

分片

在这里插入图片描述

  • 假设一个IP数据报首部20字节,数据部分3800字节,需要分片。由于MTU限制为1500字节,每个分片的最大数据长度应为1480字节(1500字节扣除20字节首部)。

  • 分片处理开始,首先根据1480字节的限制,将数据分为三个分片。第一个分片包含首部和前1400字节的数据,第二个分片包含首部和接下来的1400字节的数据,第三个分片包含剩余的数据和首部。

  • 每个分片的标识相同,表明它们属于同一个IP数据报。第一个和第二个分片的MF标志设置为1,表示后续还有更多分片。最后一个分片的MF标志设置为0,表示这是最后一个分片。

  • 片偏移量分别设置为0, 175, 和350(以8字节为单位),这表示每个分片的数据部分在原始数据报中的相对位置。

Ethernet协议

Ethernet协议是一种重要的链路层协议,专门用于实现局域网(LAN)内的数据传输和地址封装

Ethernet协议由DIX联盟开发,是计算机网络中应用最广泛的局域网通信协议之一。该协议基于冲突检测的共享媒体访问控制方法,允许多个设备在同一个局域网上同时传输数据。

以太网 V2 的 MAC 帧格式

在这里插入图片描述

  1. 类型字段
    • 2字节
    • 类型字段用来标志上一层使用的是什么协议,
    • 以便把收到的 MAC 帧的数据上交给上一层的这个协议。
  2. 数据字段
    • 46 ~ 1500 字节
    • 数据字段的正式名称是 MAC 客户数据字段。
    • 最小长度 64 字节 - 18 字节的首部和尾部 = 数据字段的最小长度(46字节)
  3. 无效的 MAC 帧
    • 数据字段的长度与长度字段的值不一致;
    • 帧的长度不是整数个字节;
    • 用收到的帧检验序列 FCS 查出有差错;
    • 数据字段的长度不在 46 ~ 1500 字节之间。有效的 MAC 帧长度为 64 ~ 1518 字节之间。
    • 对于检查出的无效 MAC 帧就简单地丢弃。以太网不负责重传丢弃的帧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/692560.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LSTM卷土重来之Vision-LSTM横空出世!!

在Transformer诞生三年后,谷歌将这一自然语言处理的重要研究扩展到了视觉领域,也就是Vision Transformer。 论文链接:https://arxiv.org/abs/2406.04303 项目链接: https://nx-ai.github.io/vision-lstm/ GPT-4o深夜发布!Plus免…

MySQL—多表查询—联合查询

一、引言 之前学习了连接查询。现在学习联合查询。 union:联合、联盟 对于union查询,就是把多次查询的结果合并起来,形成一个新的查询结果集 涉及到两个关键字:union 和 union all 注意: union 会把上面两个SQL查询…

Python魔法之旅-魔法方法(23)

目录 一、概述 1、定义 2、作用 二、应用场景 1、构造和析构 2、操作符重载 3、字符串和表示 4、容器管理 5、可调用对象 6、上下文管理 7、属性访问和描述符 8、迭代器和生成器 9、数值类型 10、复制和序列化 11、自定义元类行为 12、自定义类行为 13、类型检…

MySQL—多表查询—子查询(介绍)

一、引言 上一篇博客学习完联合查询。 这篇开始,就来到多表查询的最后一种形式语法块——子查询。 (1)概念 SQL 语句中嵌套 SELECT 语句,那么内部的 select 称为嵌套查询,又称子查询。 表现形式 注意: …

零基础入门学用Arduino 第一部分(二)

重要的内容写在前面: 该系列是以up主太极创客的零基础入门学用Arduino教程为基础制作的学习笔记。个人把这个教程学完之后,整体感觉是很好的,如果有条件的可以先学习一些相关课程,学起来会更加轻松,相关课程有数字电路…

转型AI产品经理(4):“认知负荷”如何应用在Chatbot产品

认知负荷理论主要探讨在学习过程中,人脑处理信息的有限容量以及如何优化信息的呈现方式以促进学习。认知负荷定律认为,学习者的工作记忆容量是有限的,而不同类型的认知任务会对工作记忆产生不同程度的负荷,从而影响学习效果。以下…

项目总结报告(Word模板)

2 项目工作成果 2.1 交付给用户的产品 2.2 交付给研发中心的产品 2.2.1 代码部分 2.2.2 文档部分 2.3 需求完成情况与功能及性能符合性统计 2.3.1 需求完成情况统计 2.3.2 功能符合性分析 2.3.3 性能符合性分析 3 项目工作分析 3.1 项目计划与进度实施分析 3.1.1 开发进度 3.1.…

Hadoop3:MapReduce源码解读之Map阶段的Job任务提交流程(1)

3、Job工作机制源码解读 用之前wordcount案例进行源码阅读,debug断点打在Job任务提交时 提交任务前,建立客户单连接 如下图,可以看出,只有两个客户端提供者,一个是YarnClient,一个是LocalClient。 显然&a…

Atlassian企业日技术分享:AI在ITSM中的创新实践与应用、Jira服务管理平台AI功能介绍

2024年5月17日,Atlassian中国合作伙伴企业日活动在上海成功举办。活动以“AI协同 创未来——如何利用人工智能提升团队协作,加速产品交付”为主题,深入探讨了AI技术在团队协作与产品交付中的创新应用与实践,吸引了众多业内专家、企…

ARM服务器在云手机中可以提供哪些支持

ARM服务器作为云手机的底层支撑,在很多社媒APP或者电商APP平台都有着很多看不见的功劳,可以说ARM扮演着至关重要的底层支持角色; 首先,ARM 服务器为云手机提供了强大的计算能力基础。云手机需要处理大量的数据和复杂的运算&#x…

java的核心机制:JVM

JVM(java virtual machine,java虚拟机):是一个虚拟的计算机,是java程序的运行环境。JVM具有指令集并使用不同的存储区域,负责执行指令,管理数据、内存、寄存器。 JVM功能1:实现java程…

什么,一不小心打造了一个基于大模型的操作系统

如果以大模型为Kernel, 形成一个新的操作系统,那么: 1. byzer-llm 是这个大模型操作系统的编程接口,有点类似Linux操作系统的C ABI。 2. byzer-retrieval 也被集成进 byzer- llm 接口里,算是大模型操作系统的文件系统&#xff0c…

如何删除电脑端口映射?

在使用电脑进行网络连接时,有时需要进行端口映射以实现不同设备之间的信息远程通信。当这些端口映射不再需要时,我们需要及时删除它们以确保网络的安全和稳定。本文将介绍如何删除电脑端口映射的方法。 操作系统自带的工具 大多数操作系统都提供了自带…

经典文献阅读之--Online Monocular Lane Mapping(使用Catmull-Rom样条曲线完成在线单目车道建图)

0. 简介 对于单目摄像头完成SLAM建图这类操作,对于自动驾驶行业非常重要,《Online Monocular Lane Mapping Using Catmull-Rom Spline》介绍了一种仅依靠单个摄像头和里程计生成基于样条的在线单目车道建图方法。我们提出的技术将车道关联过程建模为一个…

用QT6、QML、FFMPEG写一个有快进功能的影音播放程序

程序如图: 开发环境在ubuntu下,如果改windows下,也就改一下cmakelists.txt。windows下如何配置ffmpeg以前的文章有写,不再重复。 源程序如下: GitHub - wangz1155/ffmpegAudioThread: 用qt6,qml&#xff…

API测试工具

apifox 微信扫描登录 不推荐: Download Postman

数染色体 算法 python源码

效果图如下: 原图: 完整代码: import cv2 import numpy as np from skimage import measure import randomimage cv2.imread(113.jpg, cv2.IMREAD_GRAYSCALE)blurred_img cv2.GaussianBlur(image, (5, 5), 0)_, binary_image cv2.thresho…

Python编程基础4

模块:模块支持从逻辑上组织Python代码,当代码量变得非常大的时候,最好把代码分成一些有组织的代码段。代码片段相互间有一定的联系,可能是一个包含数据成员和方法的类、函数、变量。 搜索路径:模块的导入需要一个叫做‘…

MacOS 安装C语言版TensorFlow

文章目录 安装C语言版TensorFlow解压归档环境变量c_api.hC语言示例 安装C语言版TensorFlow 官方文档:https://tensorflow.google.cn/install/lang_c?hlzh-cnTensorFlow 提供了一个 C API,该 API 可用于为其他语言构建绑定。该 API 在 c_api.h 中定义&a…

个人博客搭建

liupengs blogs 环境搭建 版本环境:hexo3.8.0 node12.17.0 https://www.cnblogs.com/fengxiongZz/p/7707219.html 搭建 https://www.cnblogs.com/fengxiongZz/p/7707568.html 进阶 https://www.cnblogs.com/chengxs/p/7496265.html https://www.cnbl…