TH方程学习 (7)

一、内容介绍

TH存在广泛应用,在下面案例中,将介绍几种相对运动模型,斜滑接近模型,本节学习斜滑接近制导方法能够对接近时间、接近方向以及自主接近过程的相对速度进行控制。施加脉冲时刻追踪器的位置连线可构成一条直线,即理想轨道,实际接近轨道和理想接近轨道在脉冲施加时刻相交。脉冲施加的次数越多,则实际轨道偏离理想轨道越少;脉冲施加次数趋近于无穷大时,实际交会轨道将会和理想轨道重合,接近一条直线,从大范围看,多脉冲斜滑接近整个过程基本是沿直线运动的。

设追踪器在接近段的初始时刻,相对运动状态为\boldsymbol{r}_0\dot{\boldsymbol{r}_0},接近段终端时刻T的相对状态为\boldsymbol{r}_T\dot{\boldsymbol{r}}_T。设追踪器沿准直线完成对目标器的接近,由\boldsymbol{r}_T指向\boldsymbol{r}_0的直线矢量\boldsymbol{\rho}为规划轨迹。所以,在任意时刻t

\boldsymbol{\rho}(t)=\boldsymbol{r}_c(t)-\boldsymbol{r}_T

其中,\boldsymbol{r}_c(t)为追踪器在该直线上某点处的位置矢量。

矢量\boldsymbol{\rho}的单位矢量为

\boldsymbol{u}_{\rho}=[\cos\alpha,\cos\beta,\cos\gamma]^{T}

其中,\alpha,\beta,\gamma表示矢量\boldsymbol{\rho}(T)在VVLH坐标系中投影与三个坐标轴的夹角,从而决定了接近方向。矢量可以表示为

\boldsymbol{\rho}=\left | \rho \right |\boldsymbol{u}_{\boldsymbol{\rho}}

在接近过程中,可根据接近轨迹快速性和安全性等多种需求来确定\rho,\dot{\rho}的变化关系,即设计理想的交会轨迹。典型的相对运动速度变化模式有指数型,这里采用指数型,\rho\dot{\rho}为线性关系

\dot{\rho}=a\rho+\dot{\rho}_T\\\rho(t)=\rho_0\exp(at)+\frac{\dot{\rho}_T}{a}(\exp at)-1)

上式中a为斜率。则整个接近段的转移时间T为

T=\frac{1}{a}\ln\frac{\dot{\rho}_T}{\dot{\rho}_0}

设接近段采用多脉冲分段控制,作用N次速度脉冲使绕飞卫星在时间T内从初始位置\boldsymbol{r}_0转移到终点位置\boldsymbol{r}_T。任意控制段的两次脉冲作用的时间间隔是相同的,即\Delta t=T/N

在时刻t_m=m\Delta t(m=0,1,..,N-1),经过第m次速度脉冲后,绕飞卫星从\boldsymbol{r}_m转移到\boldsymbol{r}_{m+1},有

\boldsymbol{r}_m=\boldsymbol{r}_T+\rho_m \boldsymbol{u}_{\rho}\\ \rho_m=\rho_0\exp(at_m)+\frac{\dot{\rho}_T}{a}(\exp(at_m)-1)

每个阶段相当于一次双脉冲轨道转移,可通过如下编程

% 本节旨在利用TH方程实现椭圆的轨道的滑行制导
clc;clear
% 初始化条件
Ecc    =  0.1;
Perigee=  500;
TA     =  45;
N      =  5  ;    %施加脉冲次数  
r_i    =  [1;1;1];
v_i    =  [0.01;0.01;0.01];
% 期望末端条件
r_f    =  [0.1;0;0];
v_f    =  [0;0;0];
% 求出初始相对距离
rho0   =  norm(r_i-r_f);
rhof   =  0;

%设计初始和结束沿着rho方向的速度
drho0  =  -0.005;
drhof  =  -0.0001;
a            =  (drho0-drhof)/rho0;
t            =  1/a *log(drhof/drho0);
% 求出单位矢量
u_rho        =  (r_i-r_f)/rho0;


rho1_vec     =  zeros(3,N);
rho1_vec(:,1)=  r_i;
% 记录每次施加脉冲前的速度
vvff         =   zeros(3,N);
vvff(:,1)    =  v_i;
% 记录每次施加脉冲后的速度
vvrr         =  zeros(3,N);
vvrr(:,N)    =  v_f; 
delta_t      =  t/(N-1);
% 脉冲希望到达的位置
for i=1:N-1
    t1            =  i*t/(N-1);
    rho1          =  rho0*exp(a*t1)+drhof/a*(exp(a*t1)-1);
    rho1_vec(:,i+1) = r_f+rho1*u_rho;    
    [v,Phi,vv]    =  TH_solver(Ecc,Perigee,TA,rho1_vec(:,i),vvff(:,i),t/(N-1));
    Phiall{i}     =  Phi;
    Phi_rr        =  Phi(1:3,1:3);
    Phi_rv        =  Phi(1:3,4:6);
    vvrr(:,i)     =  inv(Phi_rv)*(rho1_vec(:,i+1)-Phi_rr*rho1_vec(:,i));
    [x,Phi0,xx]   =  TH_solver(Ecc,Perigee,TA,rho1_vec(:,i),vvrr(:,i),t/(N-1));
    
    yy(:,i)       =  x(1:3);
    vvff(:,i+1)   =  x(4:6);
end
dv=vvrr-vvff;
Phiall{4}*[rho1_vec(:,4);vvrr(:,4)];
tt            =  linspace(0,delta_t,1000);
for ss=1:N
    for j=1:length(tt)
        [mm,Phi00,zz0]=  TH_solver(Ecc,Perigee,TA,rho1_vec(:,ss),vvrr(:,ss),tt(j));
        tarx((ss-1)*1000+j)       =  mm(1);
        tary((ss-1)*1000+j)       =  mm(2);
        tarz((ss-1)*1000+j)       =  mm(3);
    end
end
% 使用STK验证VVLH坐标系
uiApplication = actxGetRunningServer('STK12.application');
root = uiApplication.Personality2;
checkempty = root.Children.Count;
if checkempty ~= 0
    root.CurrentScenario.Unload
    root.CloseScenario;
end
root.NewScenario('VVLH');
StartTime = '26 Jan 2024 04:00:00.000';    % 场景开始时间
StopTime = '10 Feb 2024 04:00:00.000';     % 场景结束时间
root.ExecuteCommand(['SetAnalysisTimePeriod * "',StartTime,'" "',StopTime,'"']);
root.ExecuteCommand(' Animate * Reset');
SatName = 'Target';       %  SAR_   GX_   Sat_  GX_1_  SAR_1_
satellite = root.CurrentScenario.Children.New('eSatellite', SatName);
satellite.SetPropagatorType('ePropagatorAstrogator');   %  不设置的时候默认为二体模型  ePropagatorJ4Perturbation
satellite.Propagator;
% 目标星初始状态
Perigee = 500;
T       = 60;
% 追踪星在VVLH坐下的相对位置
delta_r = [1;1;1];
delta_v = [0.01;0.01;0.01];
Perige  = 6378.137+Perigee;
ecc     = 0.1;
sma     = Perige/(1-ecc);
Inc     = 30;
w       = 0;
RAAN    = 0;
TA      = 45;
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList Initial_State Propagate']);
InitialState=satellite.Propagator.MainSequence.Item(0);
%% 初始化卫星参数
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.CoordinateType Modified Keplerian']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Epoch ',StartTime,' UTCG']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.sma ',num2str(sma),' km']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.ecc ',num2str(ecc)]);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.inc ',num2str(Inc),' deg']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.w ',num2str(w),' deg']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.RAAN ',num2str(RAAN),' deg']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.TA ',num2str(TA),' deg']);
%% 二体传播
Propagate=satellite.Propagator.MainSequence.Item(1);
Propagate.PropagatorName='Earth Point Mass';
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' RunMCS']);

% 插入目标星
SatName2 = 'Chaser';       
satellite2 = root.CurrentScenario.Children.New('eSatellite', SatName2);
satellite2.SetPropagatorType('ePropagatorAstrogator');   %  不设置的时候默认为二体模型  ePropagatorJ4Perturbation
satellite2.Propagator;
InitialState2=satellite2.Propagator.MainSequence.Item(0);
InitialState2.CoordSystemName='Satellite/Target VVLH';
InitialState2.Element.X=delta_r(1);
InitialState2.Element.Y=delta_r(2);
InitialState2.Element.Z=delta_r(3);
InitialState2.Element.Vx=delta_v(1);
InitialState2.Element.Vy=delta_v(2);
InitialState2.Element.Vz=delta_v(3);
Propagate2=satellite2.Propagator.MainSequence.Item(1);
Propagate2.PropagatorName='Earth Point Mass';
for j=1:N
    ManeuverName=['Maneuver',num2str(j)];
    PropagateName=['Propagate',num2str(j)];
    satellite2.Propagator.MainSequence.Insert('eVASegmentTypeManeuver',ManeuverName,'Propagate');
    Maneuver=satellite2.Propagator.MainSequence.Item(ManeuverName);
    root.ExecuteCommand(['Astrogator */Satellite/',SatName2,' SetValue MainSequence.SegmentList.',ManeuverName,'.ImpulsiveMnvr.AttitudeControl Thrust Vector']);
    Maneuver.Maneuver.AttitudeControl.ThrustAxesName='Satellite VVLH.Axes';
    Maneuver.Maneuver.AttitudeControl.X=dv(1,j)*1000;
    Maneuver.Maneuver.AttitudeControl.Y=dv(2,j)*1000;
    Maneuver.Maneuver.AttitudeControl.Z=dv(3,j)*1000;
    
    satellite2.Propagator.MainSequence.Insert('eVASegmentTypePropagate',PropagateName,'Propagate');
    Propagate3=satellite2.Propagator.MainSequence.Item(PropagateName);
    Propagate3.PropagatorName='Earth Point Mass';
    Propagate3.Properties.Color=255;
    Propagate3.StoppingConditions.Item(0).Properties.Trip = delta_t;
end
satellite2.Propagator.MainSequence.Cut('Propagate')
root.ExecuteCommand(['Astrogator */Satellite/',SatName2,' RunMCS']);
% 报告二颗卫星的三维关系
satellite.VO.OrbitSystems.InertialByWindow.IsVisible=0;
satellite2.VO.OrbitSystems.InertialByWindow.IsVisible=0;
satellite2.VO.OrbitSystems.Add('Satellite/Target VVLH System')
satellite.VO.Vector.RefCrdns.Item(2).Visible=1;

targetdata=root.ExecuteCommand(['Report_RM */Satellite/Target  Style "VVLH" TimePeriod "26 Jan 2024 04:00:00.000" "26 Jan 2024 4:30:00.000" TimeStep 1']);
Num=targetdata.Count;
root.ExecuteCommand('Astrogator */Satellite/Target ClearDWCGraphics');
root.ExecuteCommand('Astrogator */Satellite/Chaser ClearDWCGraphics');
for j=1:Num-2
    struct=regexp(targetdata.Item(j),',','split');
    Tar_x(j)=str2double(struct{2});
    Tar_y(j)=str2double(struct{3});
    Tar_z(j)=str2double(struct{4});
end

figure(1)
plot3(Tar_x(1:floor(t)),Tar_y(1:floor(t)),Tar_z(1:floor(t)),'LineWidth',1);
hold on
plot3(tarx,tary,tarz,'LineWidth',1)
axis([-1.5 1.5 -1.5 1.5 -1.5 1.5])
set(gca,'XDir','reverse');
set(gca,'YDir','reverse');
set(gca,'ZDir','reverse');
xlabel('X axis(km)','FontName','Times New Roman')
ylabel('Y axis(km)','FontName','Times New Roman')
zlabel('Z axis(km)','FontName','Times New Roman')
title('e=0.1,Perigee=500km','FontName','Times New Roman')
grid on

plot3(rho1_vec(1,:),rho1_vec(2,:),rho1_vec(3,:),'g.')
plot3(delta_r(1),delta_r(2),delta_r(3),'r.')

legend('transfer trajectory(STK)','trasnfer trajecoty(TH)','Impulsive Point','Original','Location','Northeast')

得到最终的结果,滑移的曲线如图所示

下图是每次施加脉冲前和施加脉冲后的位置速度,将上述脉冲形式写入STK,使用二体预报,发现计算出来的脉冲曲线与TH状态转移方程计算出来的曲线不一致,存在微小的误差。并且随着脉冲次数的增多,该误差会更加明显。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/692024.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

http接口上传文件响应413:413 Request Entity Too Large

目录 一、场景简介二、异常展示三、原因四、解决 一、场景简介 1、服务端有经过nginx代理 2、上传文件超过5M时,响应码为413 3、上传文件小于5M时,上传正常 二、异常展示 三、原因 nginx限制了上传数据的大小 四、解决 扩大nginx上传数据的大小 步…

QT4-QT5升级(3)GBK-UTF-8-乱码“常量中有换行符”

乱码有两种:我命名为汉字乱码菱形乱码如下: 1.文件编码为: GB2312 打开编码: GB2312 编译后: QString 部分字符串 常量中有换行符 char * …

MathType7.8学术必备神器 科研利器 教学好帮手

【MathType 7.8】数学公式编辑器,让学术和专业文档制作更高效、更准确!🧮✨ 作为一名软件技术专家,我一直在寻找一款能够轻松创建复杂数学公式的工具。幸运的是,我终于找到了MathType 7.8,这款强大的数学公…

[每周一更]-(第100期):介绍 goctl自动生成代码

​ 在自己组件库中,由于部分设计会存在重复引用各个模板的文件,并且基础架构中需要基础模块内容,就想到自动生成代码模板,刚好之前有使用过goctl,以下就简单描述下gozero中goctl场景和逻辑,后续自己借鉴将自…

Aptos Builder Jam 亚洲首站|见证 Aptos 公链 2024 年新突破

4 月下旬的「TinTin DESTINATION MOON」杭州站活动让我们构建下一个 Web3 巅峰的项目生态行动与未来战略。时隔三个月,「TinTin DESTINATION MOON」Aptos 线下活动将再次来到杭州,为 Aptos Builder Jam 亚洲首站火热造势,7 月 6 日诚邀 Web3 …

vuInhub靶场实战系列--Kioptrix Level #1

免责声明 本文档仅供学习和研究使用,请勿使用文中的技术源码用于非法用途,任何人造成的任何负面影响,与本人无关。 目录 免责声明前言一、环境配置1.1 靶机信息1.2 靶场配置 二、信息收集2.1 主机发现2.2 端口扫描2.2.1 masscan2.2.2 nmap 2.3 指纹识别2.4 目录扫描2.4.1 dirb…

AI图书推荐:这就是ChatGPT

这本书《这就是ChatGPT》(What Is ChatGPT Doing ... and Why Does It Work )由Stephen Wolfram撰写 全书内容概要如下: **引言与预备知识** - 作者首先表达了对ChatGPT技术突破的兴奋之情,指出这不仅是技术的故事,也是…

第六篇红队笔记-百靶精讲之pWnOS2.0

ip修改 主机发现 nmap端口扫描 Web渗透 文件上传漏洞利用 获得初级系统shell 敏感文件获取 MySQL数据获取 Root和总结 直接尝试mysql账号

深度图的方法实现加雾,Synscapes数据集以及D455相机拍摄为例

前言 在次之前,我们已经做了图像加雾的一些研究,这里我们将从深度图的方法实现加雾展开细讲 图像加雾算法的研究与应用_图像加雾 算法-CSDN博客 接下来将要介绍如何使用深度图像生成雾效图像的方法。利用Synscapes数据集,通过读取EXR格式的…

数据库(28)——联合查询

对于union查询&#xff0c;就是把多次查询的结果合并起来&#xff0c;形成一个新的查询结果集。 语法 SELECT 字段列表 FROM 表A... UNION [ALL] SELECT 字段列表 FROM 表B...; 演示 select * from user where age > 22 union all select * from user where age < 50; u…

Android 11 低电量自动关机失效

Android 11 低电量自动关机 概述 安卓系统设计了低电关机功能&#xff0c;旨在当手机电池电量过低时自动关机&#xff0c;以保护手机硬件和数据安全。该功能由以下几个部分组成&#xff1a; 电池电量监测: 安卓系统通过 BatteryService 组件持续监测电池电量。BatteryService…

关于修改Python中pip默认安装路径的终极方法

别想了&#xff0c;终极方法就是手动复制&#xff0c;不过我可以给你参考一下手动复制的方法 关于手动移动pip安装包的方法 别想了&#xff0c;终极方法就是手动复制&#xff0c;不过我可以给你参考一下手动复制的方法一、首先确认一下pip默认安装路径二、再确认一下需要移动到…

王道408数据结构CH3_栈、队列

概述 3.栈、队列和数组 3.1 栈 3.1.1 基本操作 3.1.2 顺序栈 #define Maxsize 50typedef struct{ElemType data[Maxsize];int top; }SqStack;3.1.3 链式栈 typedef struct LinkNode{ElemType data;struct LinkNode *next; }*LiStack;3.2 队列 3.2.1 基本操作 3.2.2 顺序存储…

java异常处理知识点总结

一.前提知识 首先当运行出错的时候&#xff0c;有两种情况&#xff0c;一种叫做“错误”&#xff0c;另一种叫做“异常”。错误指的是运行过程中遇到了硬件或操作系统出错&#xff0c;这种情况程序员是没办法处理的&#xff0c;因为这是硬件和系统的问题&#xff0c;不能靠代码…

linux中dd命令以及如何测试读写速度

dd命令详解 dd命令是一个在Unix和类Unix系统中非常常用的命令行工具&#xff0c;它主要用于复制文件和转换文件数据。下面我会详细介绍一些dd命令的常见用法和功能&#xff1a; 基本语法 dd命令的基本语法如下&#xff1a; bash Copy Code dd [option]...主要选项和参数 if…

Meta Llama 3 RMSNorm(Root Mean Square Layer Normalization)

Meta Llama 3 RMSNorm&#xff08;Root Mean Square Layer Normalization&#xff09; flyfish 目录 Meta Llama 3 RMSNorm&#xff08;Root Mean Square Layer Normalization&#xff09;先看LayerNorm和BatchNorm举个例子计算 LayerNormRMSNorm 的整个计算过程实际代码实现结…

OpenAI发表研究论文 介绍了一种逆向工程AI模型工作原理的方法

ChatGPT 开发商 OpenAI 构建人工智能的方法本周遭到了前员工的抨击&#xff0c;他们指责该公司利用可能有害的技术冒不必要的风险。今天&#xff0c;OpenAI 发布了一篇新的研究论文&#xff0c;目的显然是为了表明它在通过提高模型的可解释性来应对人工智能风险方面的认真态度。…

跨区域文件管控过程中 如何保障安全和效率?

跨区域文件管控是指在跨越不同地域或区域的情况下对文件进行管理和控制的过程。这种控制可能涉及多个方面&#xff0c;包括安全性、合规性和管理效率等。 为了有效进行跨区域文件管控&#xff0c;组织通常需要采取一系列策略和措施&#xff0c;例如&#xff1a; 1、加密和安全…

西门子学习笔记10 - MCGS和西门子1200进行通讯设置

1、博图软件的设置 1、修改PLC的ip地址为192.168.1.1 2、打开put&#xff0c;get通讯功能 3、设置通讯变量&#xff0c;可以是M区也可以是DB块的数据 2、MCGSE组态环境设置 1、新建项目&#xff0c;在设备窗口界面进入设备窗口 2、添加设备如下 3、双击进入配置界面 4、添加变…

把 FolkMQ 内嵌到 SpringBoot2 项目里(比如 “诺依” 啊)

FolkMQ &#xff08;消息中间件&#xff09;支持内嵌、单机、集群、多重集群等多种部署方式。 内嵌版&#xff0c;就相当于 H2 或 SQLite 数据库一样。给一些小项目&#xff08;或者特别需求&#xff09;带来了方便。大项目&#xff0c;则可以使用独立部署的 “单机版” 或 “…