Flink⼤状态作业调优实践指南:状态报错与启停慢篇

本文整理自俞航翔、陈婧敏、黄鹏程老师所撰写的大状态作业调优实践指南。由于内容丰富,本文分享终篇状态报错与启停慢篇,主要分为以下四个部分:

  1. 检查点和快照超时的诊断与调优

  2. 作业快速启动和扩缩容方案

  3. 总结

  4. 阿里云企业级存储后端Gemini 特点补充介绍

前篇:Flink⼤状态作业调优实践指南:Datastream 作业篇

中篇:Flink⼤状态作业调优实践指南:Flink SQL 作业篇

Tips:点击「阅读原文」跳转阿里云实时计算 Flink~

检查点和快照超时的诊断与调优

6.1 运行原理

Flink 的状态管理核心机制依赖于 Chandy-Lamport 算法,以确保数据的一致性和可靠性。在此框架下,检查点和快照的执行过程可以概括为两个主要阶段:

(1)同步阶段:此阶段的关键在于 Barrier 的对齐和同步资源的维护。Barrier 作为一种特殊的数据记录,在算子之间传递时,其对齐的时间与数据记录的延迟成正相关关系。

(2)异步阶段:在这一阶段,算子将本地状态信息上传至远程的持久化存储系统。上传时间的长短与状态数据的大小直接相关。

当 Flink 作业面临反压问题时,同步阶段的执行可能会变得缓慢,从而导致检查点和快照超时。因此,在遇到检查点和快照超时问题,并且监测到作业存在反压时,首先应当参考 Flink 的“运行时性能调优策略”,优先解决反压问题,以提高作业的整体效率和稳定性。

6.2 问题诊断方法

在解决反压问题后,若检查点与快照仍出现超时现象,首先应分析同步阶段的对齐时间是否过长,随后考虑是否由庞大的状态数据引起。

■ Checkpoint UI

通过这个UI,用户可以详细分析检查点和快照超时原因,具体操作如下:

在 “作业探查 - Checkpoints - Checkpoints 历史” 页面,可以在不同级别(作业、算子、单并发)观察 Checkpoint 指标,我们着重观察超时的 Checkpoint 的异常算子或正在进行的 Checkpoint 的算子:

(1)其 “Sync Duration” 和 “Alignment Duration” 是否较长,如是,则基本判定有瓶颈在同步阶段上,需要优先解决同步阶段问题

(2)其 “Async Duration” 是否较长,以及其 “Checkpointed Data Size” 是否较大,如是,则可基本判定其瓶颈在异步阶段状态上传上

图片

■ Checkpoint 指标

用户通过查看监控指标中 lastCheckpointDuration 和 lastCheckpointSize 来粗粒度分析历史 Checkpoint 的耗时和大小。

6.2 调优方法

在进行性能调优之前,首先要确保运行时性能达到预期。如果当前性能水平不足,应优先根据“运行时性能优化指南”进行调整。在满足基本性能要求后,为了进一步提高检查点和快照的效率,可以考虑以下三种策略:

(1)使用 Unaligned Checkpoint 和 Buffer Debloating:这一方法可以有效解决因等待数据对齐而导致的超时问题,适用于各种规模的作业,这里仅作简要介绍)

(2)增加运行时的并发资源:通过增加并发资源,可以减少单个并发任务的状态量,从而加速异步快照的处理流程。

(3)使用原生快照:相比标准快照,原生快照生成速度更快,存储占用更小。

使用场景方案实践方式注意事项
检查点或快照同步超时使用 Unaligned Checkpoint 和 Buffer Debloating运行参数中配置参数,可参考[8]
检查点或快照异步超时增加并发在资源配置或细粒度资源配置中增加并发[7]
快照异步超时使用原生快照对运行中的作业,选择 “创建快照” - “原生格式” 即可[9]原生快照无法保证跨大版本兼容

 Unaligned Checkpoint 和 Buffer Debloating的使用和介绍可以参考以下帖子

Flink Aligned Checkpoint和Unaligned Checkpoint原理详解-CSDN博客

一文搞懂 Flink 网络流控与反压机制_flink kafka 反压-CSDN博客

作业快速启动和扩缩容方案

7.1 运行原理

在进行作业恢复时,从检查点或快照中恢复相较于无状态启动,关键在于高效地从远程持久存储中下载状态文件并重建状态引擎。这一步骤需要执行大量的输入输出操作,容易成为恢复过程中的效率瓶颈,可能会造成作业的长时间停滞。

7.2 问题诊断方法
在作业启动或进行扩容操作期间,若发现作业长时间停留在初始化阶段,应首先诊断是否存在初始化瓶颈。以下是推荐的诊断与优化步骤:

(1)使用诊断工具分析算子状态:利用“线程转储”、“线程动态分析”和“火焰图”等工具,检查初始化阶段的算子线程栈。重点关注线程栈是否长时间处于等待状态,尤其是在Gemini等状态存储系统上的操作。

(2)识别状态算子的初始化问题:如果发现某个算子长时间处于初始化状态,且该算子涉及状态处理,那么可以推断问题可能出在状态的下载或重建过程中。

一旦确定作业初始化的瓶颈与大状态处理有关,接下来应参考后续章节提供的优化策略进行针对性调整。通过这些方法,可以有效地识别并解决作业初始化过程中的瓶颈问题,从而提高作业的运行效率和稳定性。

7.3 调优方法

为了优化作业启动和扩容效率,我们提供了两种高效策略:

(1)Local Recovery:本地恢复技术,通过在本地同时存储快照,减少恢复过程中的数据下载需求。在本地磁盘空间充裕的情况下,这是首选方案。

(2)Gemini 智能懒加载和延迟剪裁:作为平台核心技术Gemini,即使面对大规模状态的作业,也能仅通过下载必要的元数据快速启动,实现对用户数据的即时处理。随后,系统将通过异步下载和智能裁剪技术,有效处理远程检查点文件,显著降低作业中断时间,提升效率超过90%。

方案实践方式注意事项
Local Recovery:本地备份快照加速恢复运行参数中配置:state.backend.local-recovery: true [10]适用于作业 Failover 或者动态参数更新的场景,手动停止重启无法生效会多占用部分本地磁盘资源
Gemini 智能懒加载和延迟剪裁:异步状态恢复方案运行参数中配置:state.backend.gemini.file.cache.download.type: LazyDownloadOnRestore作业刚启动后的一小段时间内,会异步下载状态文件,作业性能逐步恢复,因此一开始性能会稍微低一些

总结

在上中下篇章中,我们深入探讨了Apache Flink中的状态管理机制,以及当一个作业持有大状态时在阿里云实时计算Flink版中的如何进行问题诊断和优化。Flink的状态管理是一个复杂而关键的领域,涉及到作业的性能、稳定性和资源利用等多个方面。通过对这些机制分析和优化策略的深入理解和正确应用,结合阿里云Flink提供的产品能力,希望用户可以有效地优化Flink作业,应对大规模状态作业带来的挑战,实现更高效、更可靠的实时数据处理。

附录1:阿里云企业级存储后端Gemini 特点补充介绍

GeminiStateBackend是一款面向流计算场景的KV存储引擎,作为实时计算Flink版产品的默认状态存储后端(StateBackend)。其针对流计算场景进行了全新的架构和数据结构设计,Gemini 在大状态作业下也有良好的表现,其具备如下优势特点:

性能卓越:在 Nexmark 测试中,Gemini 所有用例的性能都比 RocksDB 更优,其中约一半用例的性能领先 RocksDB 70%以上。目前在阿里巴巴集团内部的实时计算平台和公有云的实时计算Flink服务中,共计超 50WCU 的有状态作业使用 Gemini 存储引擎,其中也包含了数十 TB ~ 上百 TB 的大状态作业,助力实时计算用户高效完成业务目标。

自适应 KV 分离,极大优化大状态下双流/多流 Join 性能:Stateful Join 算子利用状态存储明细数据,因此是大状态作业的常客。基于大量场景 Join 成功率较低、或者状态数据Value较长的特点,Gemini 推出了 KV 分离的能力从而极大优化这些场景下的性能。在 Nexmark 双流 Join 的测试中,作业吞吐能力可以提升50% ~ 70% 以上,且该功能可以完全自适应调整,不需要用户额外配置调优。

轻量级 Snapshot,显著加速大状态作业检查点和快照完成:Gemini 通过支持更细粒度的 Snapshot,同时解耦检查点与 LSM 的 Compaction 机制,让检查点和快照变得更加稳定快速。此外,Gemini 通过支持 Native Incremental Savepoint,结合实时计算产品提供了原生快照,让其性能趋近检查点,极大提高了快照可用性。

三篇综合参考文献

[1] 深入分析 Flink SQL 工作机制:

https://developer.aliyun.com/article/765311

[2] 在使用 EvenTimeTemporalJoin 时不会产生 ChangelogNormalize,详见 FLINK-29849:

https://issues.apache.org/jira/browse/FLINK-29849

[3] Flink SQL Secrets: Mastering the Art of Changelog Event Out-of-Orderness:

https://www.ververica.com/blog/flink-sql-secrets-mastering-the-art-of-changelog-event-out-of-orderness

[4] 如何消除流查询的不确定性影响:

https://nightlies.apache.org/flink/flink-docs-release-1.18/zh/docs/dev/table/concepts/determinism/#33-如何消除流查询的不确定性影响

[5] 高性能 FlinkSQL 优化技巧:

https://help.aliyun.com/zh/flink/user-guide/optimize-flink-sql?spm=a2c4g.11186623.0.0.2790ff53sQpyuy

[6] taskmanager.memory.managed.fraction 配置说明:

https://nightlies.apache.org/flink/flink-docs-master/docs/deployment/config/#taskmanager-memory-managed-fraction

[7] 作业资源配置方式:

https://help.aliyun.com/zh/flink/user-guide/configure-deployment-resources

[8] Unaligned Checkpoint 和 Buffer Debloating 使用方式:

https://nightlies.apache.org/flink/flink-docs-

master/docs/ops/state/checkpointingunderbackpressure

[9] 原生快照使用方式:

https://nightlies.apache.org/flink/flink-docs-master/docs/ops/state/checkpointingunderbackpressure

[10] Local Recovery 配置说明:

https://nightlies.apache.org/flink/flink-docs-master/docs/deployment/config/#state-backend-local-recovery

[11] 状态相关介绍:

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/fault-tolerance/state/#operator-state

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/691033.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

图解支付系统全自动化渠道开关设计与实现

大家好,我是隐墨星辰,前几天在渠道路由章节中提到过自动化渠道开关,今天聊聊支付系统中全自动化渠道开关的设计与实现。主要讲清楚在什么情况下需要考虑建设自动化渠道开关,以及如何设计并实现一个平衡灵敏度和噪音的自动化渠道开…

用python编撰一个电脑清理程序

自制一个电脑清理程序,有啥用呢?在电脑不装有清理软件的时候,可以解决自己电脑内存不足的情况。 1、设想需要删除指定文件夹中的临时文件和缓存文件。以下是代码。 import os import shutil def clean_folder(folder_path): for root,…

Qt基于SQLite数据库的增删查改demo

一、效果展示 在Qt创建如图UI界面,主要包括“查询”、“添加”、“删除”、“更新”,四个功能模块。 查询:从数据库中查找所有数据的所有内容,并显示在左边的QListWidget控件上。 添加:在右边的QLineEdit标签上输入需…

分享一个按钮代码,主要有html,svg及css动画实现

按钮展示: Switch by Galahhad made with CSS | Uiverse.io 源代码: css .theme-switch {--toggle-size: 30px;/* the size is adjusted using font-size,this is not transform scale,so you can choose any size */--container-width: 5.625em;--container-height: 2.5em;-…

Linux安装Qt5.14.2

下载 qt 5.14.2下载网址 下载qt-opensource-linux-x64-5.14.2.run Linux系统下载.run文件(runfile文件),windows系统下载.exe文件,mac系统下载.dmg文件。 md5sums.txt中是各个文件对应的MD5校验码。 验证MD5校验码 md5sum是li…

UE4 使用样条线做鱼儿封闭路径动画

描述:鱼儿的游动动画的特点 1.通常是始终保持Y (Pitch)轴角度不变 2.调头的时候改变的是Z轴角度 效果:调头的时候比较自然 蓝图: 为了让鱼儿有恒定的游动速度,增加以下蓝图节点,游动速度为50 最后,让鱼…

Day53 动态规划part12

LC309买卖股票的最佳时机含冷冻期 与LC122类似,都是可无限次购买股票,只不过引入了冷冻期的概念dp[i][0] 第i天持有股票收益;dp[i][1] 第i天不持有股票收益;情况一:第i天是冷静期,不能以dp[i-1][1]购买股票,所以以dp[…

019、有序集合_命令

它保留了集合不能有重复,有序集合中的元素可以排序。 但是它和列表使用索引下标作为排序依据不同的是,它给每个元素设置一个分数(score)作为排序的依据。如图 该有序集合包含kris、mike、frank、tim、martin、tom,它们的分数分别是1、91、200、220、250、251,有序集合提…

Windows下对于Qt中带 / 的路径的处理

在Windows下,如果你想使用操作系统的分隔符显示用户的路径,请使用 toNativeSeparators()。 请看以下代码: void Player::on_playBtn_clicked() {if (this->m_url.isEmpty()) {openMedia();if (this->m_url.isEmpty())return;}qDebug(…

使用 Scapy 库编写 ICMP 不可达攻击脚本

一、介绍 ICMP不可达攻击是一种利用ICMP(Internet Control Message Protocol)不可达消息来干扰或中断目标系统的网络通信的攻击类型。通过发送伪造的ICMP不可达消息,攻击者可以诱使目标系统认为某些网络路径或主机不可达,从而导致…

idea2023如何创建普通maven工程项目

解决 1.创建新项目 1.进入创建项目 File -> new -> project 2,project 中有 build system 选择maven 2.在已有项目中创建普通maven工程 1.右键项目选择 new -> Module 2.选择 new Module 其实与新建maven工程没什么区别 em:问题 idea以前的版本是在Mav…

C++三大特性之多态

1.多态 1.1多态的概念 在面向对象方法中一般是这样表述多态性的:向不同的对象发送同一个消息,不同的对象在接收时会产生不同的行为(即方法)也就是说,每个对象可以用自己的方式去响应共同的消息。所谓消息,就是调用函数,不同的行…

C/C++中内存开辟与柔性数组

C/C中内存的开辟 在C中,我们都知道有三个区: 1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结 束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指…

【庞加莱几何-02】反演定理和证明

文章目录 一、说明二、 inversion和 reflection三、圆反演的定义四、广义的圆反演成圆 关键词:inversion、reflection 一、说明 这里是庞加莱几何的第二篇文章,是庞加莱基本几何属性的研究。本篇主要说清楚,什么是反演,在反演情况…

【启明智显芯片应用】Model3C芯片4.3寸拼图机应用方案

数据显示,618前期,早教启智、智能玩具、科学启蒙、数字阅读类产品销量增长迅猛。当下,90后新生代父母对于孩子的科学启蒙教育愈发重视,他们在给孩子选择学习产品时,越来越倾向于选择寓教于乐的益智类产品,而…

Redis 内存回收

文章目录 1. 过期key处理1.1 惰性删除1.2 周期删除 2. 内存淘汰策略 Redis 中数据过期策略采用定期删除惰性删除策略结合起来,以及采用淘汰策略来兜底。 定期删除策略:Redis 启用一个定时器定时监视所有的 key,判断key是否过期,过…

Activator.CreateInstance 与 Type.InvokeMember的区别

文章目录 一、使用 Activator.CreateInstance 创建实例1、使用 Activator.CreateInstance 的优点和缺点2、使用 Activator.CreateInstance 的代码示例 二、使用 Type.InvokeMember 创建实例1、使用 Type.InvokeMember 的优点和缺点2、使用 Type.InvokeMember 的代码示例 三、Ac…

第五十六周:文献阅读

目录 摘要 Abstract 文献阅读:应用于地表水总磷浓度预测的可解释CEEMDAN-FE-LSTM-Transformer混合模型 一、现有问题 二、提出方法 三、方法论 1、CEEMDAN(带自适应噪声的完全包络经验模式分解) 2、FE(模糊熵 &#xff09…

【C语言】动态内存经典笔试题(上卷)

前言 本系列将详细讲解4道有关动态内存的经典笔试题,以助于加深对动态内存的理解。这些题目都非常经典,你可能随时会遇到它们,所以非常重要。 本文讲解其中的前两题。 第一题 这个程序运行的结果是什么? void GetMemory(char…

读书笔记:左耳听风

程序员如何用技术变现 我完全没有必要通过打工听人安排而活着,而是反过来通过在公司工作提高自己的技能,让自己可以更为独立和自由地生活。 因而,在工作当中,对于那些没什么技术含量的工作,我基本上就像是在学生时代那…