【python】python电影评论数据抓取分析可视化(源码+数据+课程论文)【独一无二】

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


【python】python电影评论数据抓取分析可视化(源码+数据+课程论文)【独一无二】

目录

    • 【python】python电影评论数据抓取分析可视化(源码+数据+课程论文)【独一无二】
  • 一、整体要求
    • 数据抓取
    • 数据可视化
  • 二、数据抓取及可视化


一、整体要求

数据抓取

  1. 抓取电影评论数据:通过发送HTTP请求,自动化地从网站的API接口获取指定电影的评论数据。提取每条评论中的评论者昵称、评论内容和评分等关键信息。

  2. 数据存储:将提取的评论数据存储到本地的CSV文件data.csv中,便于后续的分析和处理。

数据可视化

  1. 评分分布柱状图:绘制柱状图展示不同评分的频率分布,直观显示观众对电影评分的集中情况。
  2. 评论内容词云图: 生成词云图展示评论中的高频词汇,帮助识别观众评论的热点话题和情感倾向。
  3. 评分占比饼状图: 绘制饼状图展示不同评分所占的比例,直观显示各个评分的相对分布。
  4. 昵称与评分关系柱状图:绘制柱状图展示不同用户的平均评分,分析主要评论用户的评分情况。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “影评” 获取。👈👈👈

网站部分内容如下:

在这里插入图片描述


二、数据抓取及可视化

  1. 初始化和设置:导入必要的库(如requests、BeautifulSoup、csv、pandas、matplotlib、wordcloud)。
    设置URL和请求头信息。
  2. 数据爬取和保存: 发送HTTP GET请求获取评论数据。检查请求状态码,确保请求成功。解析JSON响应,提取用户昵称、评论内容和评分。调用write_csv函数,将数据保存到data.csv文件中。
# 略....
if res.status_code == 200:
    # 略....
    for msg in usr_msg:
        write_csv([msg["xxx"], msg["content"], msg["rating"]])

通过绘制评分分布的柱状图,我们可以直观地看到不同评分的频率分布情况。这张图展示了观众对该电影的评分集中在哪些分数段。柱状图中的每一个柱子代表一个评分,柱子的高度表示给出该评分的评论数量。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “影评” 获取。👈👈👈

在这里插入图片描述

plt.figure(figsize=(10, 6))
data['rating'].value_counts().sort_index().plot(kind='bar', color='skyblue')
plt.xlabel('Rating')
plt.ylabel('Frequency')
plt.title('Rating Distribution')
plt.show()

词云图展示了评论中出现频率较高的词汇,通过不同大小的字体来表示这些词汇的出现频率。词云图的主要作用是帮助我们快速识别评论中的高频关键词,了解观众在评论中讨论的热点话题。

在这里插入图片描述

wordcloud = WordCloud(font_path='SimHei.ttf', width=800, height=400, background_color='white').generate(text)

plt.figure(figsize=(10, 6))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('Word Cloud of Comments')
plt.show()

评分占比的饼状图展示了不同评分所占的比例,通过各个扇区的面积表示每个评分的评论数量占总评论数量的比例。饼状图能够清晰地显示出各个评分的相对比例。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “影评” 获取。👈👈👈

在这里插入图片描述

rating_counts = data['rating'].value_counts()

plt.figure(figsize=(10, 6))
plt.pie(rating_counts, labels=rating_counts.index, autopct='%1.1f%%', startangle=140, colors=plt.cm.Paired(range(len(rating_counts))))
plt.title('Rating Percentage')
plt.axis('equal')
plt.show()

昵称和评分的关系柱状图展示了不同用户的平均评分情况,通过横向柱状图的形式表示。每个柱子代表一个用户,柱子的长度表示该用户的平均评分。

在这里插入图片描述

plt.figure(figsize=(12, 8))
data.groupby('nickname')['rating'].mean().sort_values().plot(kind='barh', color='lightgreen')
plt.xlabel('Average Rating')
plt.ylabel('Nickname')
plt.title('Average Rating by Nickname')
plt.show()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “影评” 获取。👈👈👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/690786.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Windows系统问题

Windows系统问题 一、补丁更新提示:0x80070643问题:解决方法:1.以管理员权限运行【cmd】。2.禁用 【Windows RE】,请运行reagentc /disable。3.回收【Windows RE】恢复分区空间。4.准备新的【Windows RE】恢复分区空间。5.配置并启…

如何检测UV胶的均匀性?

如何检测UV胶的均匀性? 检测UV胶的均匀性可以通过以下几种方法来实现: 肉眼目视检查: 这是最简单直接的方法。将UV胶涂在表面上,使用裸眼观察胶层的表面。特别注意是否存在气泡、颜色不均匀、裂纹或其他明显的不均匀性。如凹凸不…

从零开始实现自己的串口调试助手(9)-重置多文本框,保存/载入指令集

重置多文本框 添加多文本控件列表 在构造函数中把我们需要操作的控件归类到对应列表之中 //创建多文本存放数组 - 存放那三列内容 checkBox lineEdi btnfor(int i1;i<9;i){// 添加到按钮数组QString btnName QString("pushButton_t%1").arg(i); //构建对应控件名…

独享IP VS 原生IP,二者的区别与定义详解

原生IP&#xff1a;原生IP是指由Internet服务提供商&#xff08;ISP&#xff09;直接分配给用户的IP地址&#xff0c;这些IP地址通常反映了用户的实际地理位置和网络连接。原生IP是用户在其所在地区或国家使用的真实IP地址&#xff0c;与用户的物理位置直接相关。在跨境电商中&…

汉中门禁系统设备多少钱,门禁系统报价单

汉中门禁系统设备多少钱&#xff0c;门禁系统报价单 门禁系统设备存在普通与智能之分&#xff0c;其价格差异颇大。以下是一些国内品牌的门禁系统价格&#xff1b; 以上只是部分国内品牌门禁机设备的报价&#xff0c;仅供参考&#xff0c;能看出目前市面上&#xff0c;海…

Freetype 介绍和使用

目录 一、矢量字体引入 二、Freetype 介绍 1.给定一个字符&#xff0c;怎么在字体文件中找到它的关键点&#xff1f; 2.文字显示过程 3.如何使用 freetype 库 三、在 LCD 上显示一个矢量字体 1.使用 wchar_t 获得字符的 UNICODE 值 2.使用 freetype 得到位图 3.在屏幕上…

Java——数组排序

一、排序介绍 1、排序的概念 排序是将多个数据按照指定的顺序进行排列的过程。 2、排序的种类 排序可以分为两大类&#xff1a;内部排序和外部排序。 3、内部排序和外部排序 1&#xff09;内部排序 内部排序是指数据在内存中进行排序&#xff0c;适用于数据量较小的情况…

一个 buffer 使用的负反馈实例

端到端拥塞控制其实就是负反馈的实施。典型的做法是识别到一系列标志性事件&#xff0c;比如丢包&#xff0c;时延增加等&#xff0c;然后对这些事件做反应&#xff0c;进而形成负反馈&#xff0c;但 inflight 守恒是一种完全不同的做法&#xff0c;它将负反馈平铺到了整个传输…

pytorch 笔记:pytorch 优化内容(更新中)

1 Tensor创建类 1.1 直接创建Tensor&#xff0c;而不是从Python或Numpy中转换 不要使用原生Python或NumPy创建数据&#xff0c;然后将其转换为torch.Tensor直接用torch.Tensor创建或者直接&#xff1a;torch.empty(), torch.zeros(), torch.full(), torch.ones(), torch.…

嵌入式Linux系统编程 — 3.2 stat、fstat 和 lstat 函数查看文件属性

目录 1 文件有哪些属性 2 stat函数 2.1 stat函数简介 2.2 struct stat 结构体 2.3 struct timespec 结构体 2.4 示例程序 3 fstat 和 lstat 函数 3.1 fstat 函数 3.2 lstat 函数 1 文件有哪些属性 Linux文件属性是对文件和目录的元数据描述&#xff0c;包括文件类型…

代码随想录-算法训练营day61【代码随想录-算法训练营-总结】

代码随想录-035期-算法训练营【博客笔记汇总表】-CSDN博客 算法训练营&#xff0c;60天&#xff0c;包含这些内容&#xff1a; 01、数组 02、链表 03、哈希表 04、字符串 05、双指针法 06、栈与队列 07、二叉树 08、回溯算法 09、贪心算法 10、动态规划 11、单调栈 12、图论 做…

数据库同步软件PanguSync常见错误解决方法

​​​​​​在部署PanguSync数据库同步软件的过程中&#xff0c;常常会遇见一些错误提示&#xff0c;某些老铁可能会一脸懵逼&#xff0c;本文对一些常见的错误信息进行了总结&#xff0c;并提供了解决方法。 1.")"附近有语法错误 该问题是由于源表未设置主键&…

安卓打造安装包(应用打包、规范处理安装包、安全加固)

本章介绍应用安装包的基本制作规范&#xff0c;主要包括&#xff1a;如何导出既美观又精简的APK文件、如何按照上线规范调整App的相关设置、如何对APK文件进行安全加固以防止安装包被破解。 应用打包 本节介绍APK安装包的打包过程&#xff0c;包括&#xff1a;如何利用Androi…

Java Web学习笔记21——前后端分离开发

前后端混合开发&#xff1a; 沟通成本比较高。 分工不明确。 不便管理&#xff0c;不便于后期的维护和拓展。 前后端分离开发&#xff1a; 当前主流的开发模式&#xff1a;前后端分离开发&#xff1a; 接口文档&#xff1a; 接口并不是interface。 接口指的是业务功能。 …

选择排序(直接选择排序与堆排序)----数据结构-排序②

1、选择排序 1.1 基本思想 每一次从待排序的数据元素中选出最小&#xff08;或最大&#xff09;的一个元素&#xff0c;放在序列的起始位置&#xff0c;直到全部待排序的数据元素排完就停止 。 1.2 直接选择排序 排序思想&#xff1a; ①在元素集合array[i]--array[n-1]中选择…

Java项目如何外发告警日志到企业微信

前言 最近领导交代了一个需求,就是有些许客户不单单满足平台告警日志外发到邮箱、短信的形式,还要以消息聊天的形式外发给企业微信。 具体操作 1、注册企业微信。 2、登录企业微信,找到应用管理,创建应用。 3、创建完之后需要记录以下图片中两个值的信息。 4、然后记录下…

stanfordcorenlp+python做中文nlp任务,得到的结果中全是空字符串,而不是中文字符串

问题描述 代码&#xff1a; from stanfordcorenlp import StanfordCoreNLP import logging#中文中的应用&#xff0c;一定记得下载中文jar包&#xff0c;并标志lang‘zh’ nlp_zh StanfordCoreNLP(rD:\stanford-corenlp-full-2016-10-31, port8094, langzh,quietFalse,logg…

【排序算法】总结篇

✨✨这些 排序算法都是指的 需要进行比较的排序算法 ✨✨下面都是略微讲解一下思路&#xff0c;如果需要详细了解哪一个排序&#xff0c;点击&#x1f449;链接即可 ✨✨对于时间、空间复杂度、稳定性&#xff0c;希望你&#x1f9d1;‍&#x1f393;能够理解记忆&#x1f9d1;…

SpeedyBee飞塔F405 V3 50A

遥控器常用的几种协议&#xff1a; 一文打尽PWM协议、PPM协议、PCM协议、SBUS协议、XBUS协议、DSM协议 | STM32的通用定时器TIM3实现PPM信号输出 - 蔡子CaiZi - 博客园 (cnblogs.com) SpeedyBee飞塔的官方教程&#xff1a; FlowUs 息流 - 新一代生产力工具 为8位电调刷写固…

【纯血鸿蒙】——自适应布局如何实现?

界面级一多能力有 2 类&#xff1a; 自适应布局: 略微调整界面结构 响应式布局&#xff1a;比较大的界面调整 本文章先主要讲解自适应布局&#xff0c;响应式布局再后面文章再细讲。话不多说&#xff0c;开始了。 自适应布局 针对常见的开发场景&#xff0c;方舟开发框架提…