数据挖掘--分类

数据挖掘--引论

数据挖掘--认识数据

数据挖掘--数据预处理

数据挖掘--数据仓库与联机分析处理

数据挖掘--挖掘频繁模式、关联和相关性:基本概念和方法

数据挖掘--分类

数据挖掘--聚类分析:基本概念和方法


基本概念

决策树归纳

决策树:决策树是一种类似流程图的树结构,其中每个内部结点(非树叶节点)表示在一个属性上的测试,每一个分枝代表该测试的一个输出,而每个树叶节点存放一个类标号,树的最顶层及节点是根节点

属性选择

信息熵

p为概率

先计算总的信息熵=-((p(是)log2(p(是))+p(否)log2(p(否))

属性1种类1熵=-(p(种类1是)log2(种类1是)+p(种类1否)log2(种类1否))

属性1增益=总信息熵-p(种类1)属性1种类1熵-p(种类2)属性1种类2熵

取最大的

信息增益

基尼指数

属性1种类1权重(1-(是)^2-(否)^2)+ 属性1种类2权重(1-(是)^2-(否)^2)取最小的

贝叶斯分类方法

预测类隶属关系的概率例如:一个给定的元组属于另一个特定类的概率

贝叶斯定理

朴素贝叶斯

首先确定类别,不同类别的概率

列出每个类别中各个属性的概率

p(假设某个类别1)p(属性1|某个类别1)p(属性2|某个类别1)

p(假设某个类别2)p(属性1|某个类别2)p(属性2|某个类别2)

分别比较两个的概率,那个高就是哪个类别

ROC曲线

TP(真正例)(True Positive)、FP(假正例)、TN(真负例)(True Negative)、FN(假负例)

TPR=(真正例)/(真正例+假负例)(实际为真的总数)

FPR=假正例

AdaBoost

AdaBoost是一种流行的提升算法,创建分类器的组合,每个给出一个加权投票(评委打分,不由一个人的分数决定,专家和观众占不同的比例,最算出来的才是最终分数)

流程:

1.赋予每个训练元组相同的权重1/d

2.有放回的抽样,形成一个训练集Di

3.把这个训练集拿去训练,训练出分类器Mi

4.使用Di作为检验集,看Mi的错误率error

5.错误率大于0.5就需要重新抽样形成Di,重复步骤

6.找到一个正确的,更新权重(1-error)error

7.直到所有正确的分类元组被找到,规范每个元组权重

高级方法

向后传播分类

后向传播:

1后向传播是一种神经网络学习算法

2神经网络是一组连接/输出单元,每个连接都有一个权重

多层前馈神经网络

1后向传播在多层前馈神经网络上学习

2神经网络由一个输入层和一个输出层,一个或多个隐藏层和一个输出层组成

3.有几个输出单元就有几层神经网络

4.给定足够多的训练样本,多层前馈神经网络可以逼近任何函数,也就是可以去模拟任何问题

5.网络是前馈的,权重不会回送到输入单位

6.网络是全连接的

向后传播

支持向量机

无论在什么纬度,存在一个线性或者非线性的线或者平面可以去分开两个数据集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/690117.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

第二十七章HTML.CSS综合案例

1.产品介绍 效果图如下&#xff1a; 代码部分如下&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0">…

建筑特种工高处作业吊篮安装拆卸工题库

1、施工现场外租吊篮设备&#xff0c;在施工前应由( )编制专项施工方案&#xff0c;并由( )技术负责人和现场总监理工程师签字后实行。 A 使用单位 使用单位 B 使用单位 租赁单位 C 租赁单位 使用单位 D 租赁单位 租赁单位 2、施工现场外租吊篮…

安装windows11系统跳过微软账号登录,使用本地账号登录方法

在安装win11系统&#xff0c;进行到如图下所示界面的时候&#xff0c;暂停下 我们可以按下键盘的ShiftF10按键&#xff08;部分电脑是FnShiftF10&#xff09;&#xff0c;这时屏幕会出现命令行窗口&#xff0c;如图下所示 我们需要在命令行内输入代码oobe\bypassnro.cmd然后回车…

【Java】解决Java报错:IllegalArgumentException

文章目录 引言1. 错误详解2. 常见的出错场景2.1 非法的参数值2.2 空值或 null 参数2.3 非法的数组索引 3. 解决方案3.1 参数验证3.2 使用自定义异常3.3 使用Java标准库中的 Objects 类 4. 预防措施4.1 编写防御性代码4.2 使用注解和检查工具4.3 单元测试 结语 引言 在Java编程…

关于phpstorm创建类和方法时带描述注释

展示效果&#xff1a; 1、使用phpstorm创建类文件时自带注释及注释编辑 步骤1&#xff1a; 步骤二&#xff1a; 内容&#xff1a; <?php /** * Desc: * author guowei * datetime $DATE $TIME */ #if (${NAMESPACE}) namespace ${NAMESPACE}; #end class ${NAM…

Prism 入门06,发布订阅(入门完结)

本章节介绍使用 Prism 框架的消息聚合器 IEventAggregator ,实现如何进行消息发布,订阅,取消订阅的功能 继续使用上一章节使用的 Prism WPF 空模板项目 BlankApp1 1.首先,在使用 Prism 框架当中,进行事件消息的发布和订阅之前,需要定义发布事件的事件消息模型。如下所示:…

day40--Redis(二)实战篇

实战篇Redis 开篇导读 亲爱的小伙伴们大家好&#xff0c;马上咱们就开始实战篇的内容了&#xff0c;相信通过本章的学习&#xff0c;小伙伴们就能理解各种redis的使用啦&#xff0c;接下来咱们来一起看看实战篇我们要学习一些什么样的内容 短信登录 这一块我们会使用redis共…

华为端云一体化开发 初始化云db表结构和表数据(实践2.0)(HarmonyOS学习第七课)

实例介绍&#xff1a;黑马鸿蒙刷题学习过程 1. 静态页面准备 借用黑马完成的页面&#xff0c;已经提供给大家一套写好的基本模板&#xff0c;大家直接将这套模板覆盖原有entry/src/main目录就可以 &#x1f4ce;main.ziphttps://www.yuque.com/attachments/yuque/0/2024/zip…

【Java】解决Java报错:NoClassDefFoundError

文章目录 引言1. 错误详解2. 常见的出错场景2.1 类路径配置错误2.2 依赖库缺失2.3 类文件被删除或损坏2.4 类加载器问题 3. 解决方案3.1 检查类路径配置3.2 检查依赖库3.3 检查类文件3.4 调试类加载器问题 4. 预防措施4.1 使用构建工具管理依赖4.2 定期进行构建和测试4.3 使用I…

番外篇-YOLOV10尝鲜

一、 番外篇-YOLOV10尝鲜 最近由清华大学的研究团队研发的最新的YOLOV10模型。这一新一代的YOLO模型专注于实时端到端的目标检测。YOLOv10在多个方面进行了改进&#xff0c;包括优化模型架构、消除非极大值抑制&#xff08;NMS&#xff09;后处理步骤&#xff0c;并引入了高效…

零刻SER8 AMD 8845Hs Ryzen AI 本地部署大语言模型教程!

零刻SER8 8845HS,配备了一个内置的 NPU&#xff08;神经网络处理单元&#xff09;&#xff0c;可以通过LM Studio语言大模型来部署己的 GPT 模型 AI 聊天机器人&#xff0c;AI 助手已迅速成为提高生产力、效率&#xff0c;甚至是头脑风暴的关键资源。在本地机器上运行 AI 聊天机…

端午搞个零花钱,轻松赚取创业的第一桶金!2024最受欢迎的创业项目,2024新的创业机会

好好的端午节&#xff0c; 净给我添堵&#xff01; 本来我打算在端午节愉快的玩耍&#xff0c; 结果一大早起床却看到舍友在给一堆设备充电&#xff0c; 然后装的整整齐齐&#xff0c; 满满一书包。 我好奇他小子这是要干嘛&#xff1f; 不会是打算今天回去给亲朋好友准备…

图神经网络(GNN)的原理及应用

什么是图神经网络 &#xff08;GNN&#xff09;&#xff1f; 图神经网络 &#xff08;GNN&#xff09; 是一种神经网络架构和深度学习方法&#xff0c;可以帮助用户分析图&#xff0c;使他们能够根据图的节点和边描述的数据进行预测。 图形表示数据点&#xff08;也称为节点&…

MacOS_奇安信天擎卸载指南,无需管理员密码

背景 奇安信天擎是一款基于云端的终端安全管理软件,在某些情况下,用户可能需要卸载该软件,例如 1、入职企业后使用的是自己的电脑,离职后监控软件还在 2、自己无意下载的软件或被病毒感染后强制下载的垃圾软件 3、员工看不惯企业监控自己的这个行为,使用技术手段屏蔽企业…

SQLite3(1):介绍安装与测试

目录 1、SQLite3介绍 2、SQLite3的优势和特性 3、SQLite3安装与测试 3.1 SQLite3安装 3.2 SQLite3测试 4、SQLite3简单使用 4.1 连接数据库文件 4.2 创建信息表 4.3 插入三个学生信息 4.4 确认信息 5、总结 1、SQLite3介绍 SQLite3是一种轻量级的关系型数据库管理系…

使用 CloudFlare Turnstile 解决跨境电商站的垃圾邮件侵扰

最近明月一个跨境电商代维客户的网站被垃圾邮件侵扰了,从最开始的每天几封疯狂到每天几百上千封垃圾邮件,几乎所有可拦截屏蔽的关键词都是随机可变的,简单的邮件客户端拦截基本已经没有任何效果了,在收到用户的求助后经过分析发现主要是利用网站在线咨询页面里的邮件发送造…

C++| 一维线性插值、imadjust函数

前言&#xff1a;最近要从Matlab代码改C代码&#xff0c;不能直接用Matlab生成的C代码&#xff0c;因为需要嵌入到已有项目中。Matlab本身有很多很方便的数学公式&#xff0c;但是在C里没有相关的库的话&#xff0c;需要自己实现。 一维线性插值、imadjust函数 一维线性插值原理…

Ubuntu项目部署

解压jdk tar -zxvf jdk-8u151-linux-x64.tar.gz 配置Java环境变量&#xff1a; vim ~/.bashrc export JAVA_HOME/root/soft/jdk1.8.0_151 export JRE_HOME${JAVA_HOME}/jre export CLASSPATH.:${JAVA_HOME}/lib:${JRE_HOME}/lib export PATH${JAVA_HOME}/bin:$PATH 设置环境变…

公差基础(互换性和测量基础)

互换性概念&#xff1a; 图纸设计是理论的&#xff0c;理性的&#xff0c;没有误差的&#xff0c;但是实际上加工上市有误差的。 所以说&#xff0c;实际加工出来的零件是否符合要求&#xff0c;我们需要对图纸上的尺寸精度&#xff0c;几何精度&#xff0c;表面粗糙度进行说明…

【vector模拟实现】附加代码讲解

vector模拟实现 一、看源代码简单实现1. push_backcapacity&#xff08;容量&#xff09;sizereserve&#xff08;扩容&#xff09;operator[ ] &#xff08;元素访问&#xff09; 2. pop_back3. itorator&#xff08;迭代器&#xff09;4.insert & erase &#xff08;头插…