番外篇-YOLOV10尝鲜

一、 番外篇-YOLOV10尝鲜

最近由清华大学的研究团队研发的最新的YOLOV10模型。这一新一代的YOLO模型专注于实时端到端的目标检测。YOLOv10在多个方面进行了改进,包括优化模型架构、消除非极大值抑制(NMS)后处理步骤,并引入了高效的模型设计策略,从而在提高检测精度的同时显著降低了计算开销和推理延迟。
具体来说,YOLOv10的研发团队包括Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han和Guiguang Ding。这些研究人员通过广泛的实验,证明了YOLOv10在不同模型规模上实现了最先进的性能和效率。例如,与YOLOv9-C相比,YOLOv10-B在相同性能下延迟减少了46%,参数减少了25%。
通过这些改进,YOLOv10在实时性和精度方面都达到了新的高度,适用于各种实时目标检测应用,如自动驾驶、视频监控和智能安防等。

好奇心驱使尝试一下v10模型的效果。下载了yolov10s.pt版本,进行实时视频监控测试。
各版本下载和介绍如下:
模型下载:

YOLOv10-N:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10n.pt
YOLOv10-S:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10s.pt
YOLOv10-M:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10m.pt
YOLOv10-B:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10b.pt
YOLOv10-L:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10l.pt
YOLOv10-X:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10x.pt

模型介绍:
在这里插入图片描述

二、YOLOv10实战:

1.实时检测

30行左右代码构建基于YOLOv10的实时视频监控**
代码如下:运行后电脑摄像头自动开启,实时检测摄像头内的目标。

import cv2
from ultralytics import YOLOv10

model = YOLOv10("yolov10s.pt")
cap = cv2.VideoCapture(0)
while True:
    ret, frame = cap.read()
    if not ret:
        break  # 如果没有读取到帧,退出循环
    results = model.predict(frame)
    # 遍历每个预测结果
    for result in results:
        # 结果中的每个元素对应一张图片的预测
        boxes = result.boxes  # 获取边界框信息
        for box in boxes:
            x1, y1, x2, y2 = map(int, box.xyxy[0])
            cls = int(box.cls[0])
            conf = float(box.conf[0])
            cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
            cv2.putText(frame, f'{model.names[cls]} {conf:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                        (255, 0, 0), 2)
    # 显示带有检测结果的帧
    cv2.imshow('YOLOv10实时检测', frame)
    # 按'q'键退出
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 释放资源
cap.release()
cv2.destroyAllWindows()

检测结果:
在这里插入图片描述
检测效果确实很赞!
参考:基于YOLOv10实现你的第一个视觉AI大模型
另附:基于YOLOv8的实时视频监控写法如下:
代码如下:运行后电脑摄像头自动开启,实时检测摄像头内的目标。
完整代码:

import cv2
from ultralytics import YOLO

model = YOLO("yolov8n.pt")  # 

cap = cv2.VideoCapture(0)

while True:
    ret, frame = cap.read()
    if not ret:
        break  # 如果没有读取到帧,退出循环

    results = model.predict(frame)
    class_counts = {}

    for result in results:
        boxes = result.boxes
        for box in boxes:
            x1, y1, x2, y2 = map(int, box.xyxy[0])
            cls = int(box.cls[0])
            conf = float(box.conf[0])
            class_name = model.names[cls]

            # 统计每种类别的数量
            if class_name in class_counts:
                class_counts[class_name] += 1
            else:
                class_counts[class_name] = 1

            # 在图像上绘制边界框和标签
            cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
            cv2.putText(frame, f'{class_name} {conf:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                        (255, 0, 0), 2)

    # 在图像上绘制类别数量
    y_offset = 30
    for class_name, count in class_counts.items():
        cv2.putText(frame, f'{class_name}: {count}', (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
        y_offset += 30

    # 显示带有检测结果的帧
    cv2.imshow('YOLO实时检测', frame)

    # 按'q'键退出
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 释放资源
cap.release()
cv2.destroyAllWindows()

检测效果如下:
在这里插入图片描述

2.YOLOV10图片推理:

完整代码如下:


from ultralytics import YOLOv10
import supervision as sv
import cv2

MODEL_PATH = 'yolov10s.pt'
IMAGE_PATH = 'test_images_1/veh2.jpg'

model = YOLOv10(MODEL_PATH)
image  = cv2.imread(IMAGE_PATH)
results = model(source=image, conf=0.25, verbose=False)[0]
detections = sv.Detections.from_ultralytics(results)
box_annotator = sv.BoxAnnotator()

category_dict = {
    0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
    6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
    11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
    16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
    22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
    27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
    32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
    36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
    40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
    46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
    51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
    56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
    61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
    67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
    72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
    77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
}

labels = [
    f"{category_dict[class_id]} {confidence:.2f}"
    for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_image = box_annotator.annotate(
    image.copy(), detections=detections, labels=labels
)

# cv2.imwrite('result.jpg', annotated_image)

cv2.imshow("res",annotated_image)
cv2.waitKey()
cv2.destroyAllWindows()

检测结果如下:
在这里插入图片描述
参考链接:https://github.com/THU-MIG/yolov10
下载权重:https://github.com/THU-MIG/yolov10/releases/download/v1.0/yolov10n.pt
参考:YOLOv10尝鲜测试五分钟极简配置

三、 YOLO版本简史

YOLO(You Only Look Once)系列目标检测模型的发展历程中,不同版本是由不同的研究团队研发的。以下是各个版本的研发团队简介:

YOLOv1

研发团队:Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi

  • 机构:华盛顿大学和Facebook AI Research (FAIR)
  • 发布时间:2016年
  • 简介:YOLOv1是YOLO系列的第一个版本,提出了一种统一的目标检测方法,能够在单次前向传递中预测物体边界和类别。

YOLOv2 (YOLO9000)

研发团队:Joseph Redmon, Ali Farhadi

  • 机构:华盛顿大学
  • 发布时间:2017年
  • 简介:YOLOv2在YOLOv1的基础上进行了改进,引入了多尺度训练和Batch Normalization等技术,并扩展了模型的检测能力(YOLO9000)来识别9000种类别。

YOLOv3

研发团队:Joseph Redmon, Ali Farhadi

  • 机构:华盛顿大学
  • 发布时间:2018年
  • 简介:YOLOv3进一步改进了网络结构,引入了残差网络和多尺度特征金字塔,使其在精度和速度上有显著提升。

YOLOv4

研发团队:Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao

  • 机构:Alexey Bochkovskiy的独立研究与台湾国立中山大学
  • 发布时间:2020年
  • 简介:YOLOv4在YOLOv3的基础上,结合了许多新技术如CSPNet、Mish激活函数和SAM,进一步提高了性能。

YOLOv5

研发团队:Glenn Jocher

  • 机构:Ultralytics LLC
  • 发布时间:2020年
  • 简介:YOLOv5由Ultralytics团队开发,注重易用性和快速部署,提供了多种预训练模型和丰富的工具,便于在各种应用中使用。

YOLOv6

研发团队:Meituan-Dianping

  • 机构:美团
  • 发布时间:2022年
  • 简介:YOLOv6专注于工业应用中的高效目标检测,优化了模型的推理速度和精度,适合在生产环境中部署。

YOLOv7

研发团队:Wong Kin-Yiu, Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao

  • 机构:台湾国立中山大学
  • 发布时间:2022年
  • 简介:YOLOv7进一步优化了网络架构和训练策略,使得模型在速度和精度上都达到了新的高度。

YOLOv8

研发团队:Ultralytics LLC

  • 机构:Ultralytics LLC
  • 发布时间:2023年
  • 简介:YOLOv8延续了YOLOv5的开发理念,通过改进的架构和训练方法,进一步提升了目标检测的性能和效率。

YOLOv9

研发团队:Ultralytics LLC

  • 机构:Ultralytics LLC
  • 发布时间:2024年
  • 简介:YOLOv9在YOLOv8的基础上,针对大规模数据集和复杂场景进行了优化,提供了更高的检测精度和速度。

YOLOv10

研发团队:Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, Guiguang Ding

  • 机构:清华大学
  • 发布时间:2024年
  • 简介:YOLOv10通过优化模型架构和消除非极大值抑制(NMS),显著提升了实时目标检测的性能和效率。

这些不同版本的YOLO模型在各自的时代都对目标检测技术做出了重要贡献,推动了这一领域的发展。各个版本在精度、速度和易用性上都有不同的侧重点,以满足不同应用场景的需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/690102.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

零刻SER8 AMD 8845Hs Ryzen AI 本地部署大语言模型教程!

零刻SER8 8845HS,配备了一个内置的 NPU(神经网络处理单元),可以通过LM Studio语言大模型来部署己的 GPT 模型 AI 聊天机器人,AI 助手已迅速成为提高生产力、效率,甚至是头脑风暴的关键资源。在本地机器上运行 AI 聊天机…

端午搞个零花钱,轻松赚取创业的第一桶金!2024最受欢迎的创业项目,2024新的创业机会

好好的端午节, 净给我添堵! 本来我打算在端午节愉快的玩耍, 结果一大早起床却看到舍友在给一堆设备充电, 然后装的整整齐齐, 满满一书包。 我好奇他小子这是要干嘛? 不会是打算今天回去给亲朋好友准备…

图神经网络(GNN)的原理及应用

什么是图神经网络 (GNN)? 图神经网络 (GNN) 是一种神经网络架构和深度学习方法,可以帮助用户分析图,使他们能够根据图的节点和边描述的数据进行预测。 图形表示数据点(也称为节点&…

MacOS_奇安信天擎卸载指南,无需管理员密码

背景 奇安信天擎是一款基于云端的终端安全管理软件,在某些情况下,用户可能需要卸载该软件,例如 1、入职企业后使用的是自己的电脑,离职后监控软件还在 2、自己无意下载的软件或被病毒感染后强制下载的垃圾软件 3、员工看不惯企业监控自己的这个行为,使用技术手段屏蔽企业…

SQLite3(1):介绍安装与测试

目录 1、SQLite3介绍 2、SQLite3的优势和特性 3、SQLite3安装与测试 3.1 SQLite3安装 3.2 SQLite3测试 4、SQLite3简单使用 4.1 连接数据库文件 4.2 创建信息表 4.3 插入三个学生信息 4.4 确认信息 5、总结 1、SQLite3介绍 SQLite3是一种轻量级的关系型数据库管理系…

使用 CloudFlare Turnstile 解决跨境电商站的垃圾邮件侵扰

最近明月一个跨境电商代维客户的网站被垃圾邮件侵扰了,从最开始的每天几封疯狂到每天几百上千封垃圾邮件,几乎所有可拦截屏蔽的关键词都是随机可变的,简单的邮件客户端拦截基本已经没有任何效果了,在收到用户的求助后经过分析发现主要是利用网站在线咨询页面里的邮件发送造…

C++| 一维线性插值、imadjust函数

前言:最近要从Matlab代码改C代码,不能直接用Matlab生成的C代码,因为需要嵌入到已有项目中。Matlab本身有很多很方便的数学公式,但是在C里没有相关的库的话,需要自己实现。 一维线性插值、imadjust函数 一维线性插值原理…

Ubuntu项目部署

解压jdk tar -zxvf jdk-8u151-linux-x64.tar.gz 配置Java环境变量: vim ~/.bashrc export JAVA_HOME/root/soft/jdk1.8.0_151 export JRE_HOME${JAVA_HOME}/jre export CLASSPATH.:${JAVA_HOME}/lib:${JRE_HOME}/lib export PATH${JAVA_HOME}/bin:$PATH 设置环境变…

公差基础(互换性和测量基础)

互换性概念: 图纸设计是理论的,理性的,没有误差的,但是实际上加工上市有误差的。 所以说,实际加工出来的零件是否符合要求,我们需要对图纸上的尺寸精度,几何精度,表面粗糙度进行说明…

【vector模拟实现】附加代码讲解

vector模拟实现 一、看源代码简单实现1. push_backcapacity(容量)sizereserve(扩容)operator[ ] (元素访问) 2. pop_back3. itorator(迭代器)4.insert & erase (头插…

机器学习与数据挖掘知识点总结(一)

简介:随着人工智能(AI)蓬勃发展,也有越来越多的人涌入到这一行业。下面简单介绍一下机器学习的各大领域,机器学习包含深度学习以及强化学习,在本节的机器学习中主要阐述一下机器学习的线性回归逻辑回归&…

Day46 代码随想录打卡|二叉树篇---从中序与后序遍历序列构造二叉树

题目(leecode T106): 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 方法:本题要通过中序遍历和后…

【面试干货】如何选择MySQL数据库存储引擎(MyISAM 或 InnoDB)

【面试干货】如何选择MySQL数据库存储引擎(MyISAM 或 InnoDB) 💖The Begin💖点点关注,收藏不迷路💖 MySQL数据库存储引擎是一个 关键 的考虑因素。MySQL提供了多种存储引擎,其中最常用的是 MyISAM 和 InnoD…

实习记录2

1.flowable框架参数传递大概流程 通过传递xml,传递到后端,然后后端去解析 2.vue封装组件 在 Vue.js 中创建可复用的自定义组件是一个常见的需求,这样可以提高代码的复用性和可维护性。下面是一个简单的步骤指南,帮助你创建一个…

【kyuubi-spark】从0-1部署kyuubi集成spark执行spark sql到k8s读取iceberg的minio数据

一、背景 团队在升级大数据架构 前端使用trino查询,对trino也进行了很多优化,目前测试来看,运行还算稳定,但是不可避免的trino的任务总会出现失败的情况。原来的架构是trino失败后去跑hive,而hive是跑mapreduce依赖于…

C# list线程安全

不安全的例子 /// <summary> /// 不安全的例子 /// </summary> static void unSalfe() {List<int> mylist new List<int>();var t Task.Run(()>{Thread.Sleep(2000);for(int i0; i<20; i){mylist.Add(3);Thread.Sleep(1);}System.Console.Wri…

【全开源】云调查考试问卷系统(FastAdmin+ThinkPHP+Uniapp)

便捷、高效的在线调研与考试新选择​ 云调查考试问卷是一款基于FastAdminThinkPHPUniapp开发的问卷调查考试软件&#xff0c;可以自由让每一个用户自由发起调查问卷、考试问卷。发布的问卷允许控制问卷的搜集、回答等各个环节的设置&#xff0c;同时支持系统模板问卷&#xff…

微信小程序毕业设计-综合文化信息管理系统项目开发实战(附源码+论文)

大家好&#xff01;我是程序猿老A&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f49e;当前专栏&#xff1a;微信小程序毕业设计 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f380; Python毕业设计…

【vscode-快捷键 一键JSON格式化】

网上有很多JSON格式化工具&#xff0c;也有很多好用的在线json格式化工具。但是其实Vscode里面的可以直接格式化JSON&#xff0c;这里分享一个我常用的小插件 Prettify JSON 未格式化的JSON数据 召唤出命令行&#xff0c;输入prettify JSON 即可! ✿✿ヽ(▽)ノ✿

基于STM32开发的智能家居监控系统

目录 引言环境准备智能家居监控系统基础代码实现&#xff1a;实现智能家居监控系统 4.1 传感器数据读取4.2 电器设备控制4.3 实时数据监控与分析4.4 用户界面与数据可视化应用场景&#xff1a;家庭安全监控与管理问题解决方案与优化收尾与总结 1. 引言 随着智能家居技术的发…