深入探索:十种流行的深度神经网络及其运作原理

在这里插入图片描述

算法

  • 深入探索:十种流行的深度神经网络及其运作原理
    • 一、卷积神经网络(CNN)
      • 基本原理
      • 工作方式
    • 二、循环神经网络(RNN)
      • 基本原理
      • 工作方式
    • 三、长短期记忆网络(LSTM)
      • 基本原理
      • 工作方式
    • 四、门控循环单元(GRU)
      • 基本原理
      • 工作方式
    • 五、生成对抗网络(GAN)
      • 基本原理
      • 工作方式
    • 六、变分自编码器(VAE)
      • 基本原理
      • 工作方式
    • 七、注意力机制(Attention Mechanism)
      • 基本原理
      • 工作方式
    • 八、Transformer
      • 基本原理
      • 工作方式
    • 九、残差网络(ResNet)
      • 基本原理
      • 工作方式
    • 十、U-Net
      • 基本原理
      • 工作方式

深入探索:十种流行的深度神经网络及其运作原理

在人工智能的迅猛发展中,深度神经网络扮演了核心角色。这些网络模型因其出色的特征学习和模式识别能力,在各个领域中都取得了显著的成就。本文将详细介绍目前十种流行的深度神经网络,探讨它们的基本原理和工作方式。

一、卷积神经网络(CNN)

基本原理

卷积神经网络主要用于处理网格化的数据,如图像。它们通过卷积层来提取空间特征,卷积操作可以捕捉局部区域的特征,并通过堆叠多个卷积层来学习从低级到高级的特征。

工作方式

CNN通过滤波器(或称为核)在输入数据上滑动,计算滤波器与输入数据的点乘,生成特征图(feature map)。这个过程可以捕获如边缘、角点等重要的视觉特征。随后,使用池化层(如最大池化)来减少特征维度和提升网络的空间不变性。CNN的这种结构使其在图像识别、视频分析等领域表现出色。

二、循环神经网络(RNN)

基本原理

循环神经网络设计用来处理序列数据,如文本或时间序列。它们可以将信息从一个时间步传递到下一个时间步,从而捕捉数据中的时间动态特征。

工作方式

在RNN中,每个时间步的输出不仅依赖于当前输入,还依赖于前一时间步的输出。网络有一个隐藏状态,该状态包含了过去信息的某种总结,并用于计算当前输出。然而,标准RNN容易遭受梯度消失或梯度爆炸的问题,这限制了它们在长序列中的应用。

三、长短期记忆网络(LSTM)

基本原理

长短期记忆网络是RNN的一种变体,它通过引入三种门控机制(遗忘门、输入门、输出门)来解决标准RNN在处理长序列时的梯度问题。

工作方式

LSTM的每个单元都包括一个细胞状态和三个门控制。细胞状态贯穿整个链条,保持信息的流动,而门控制信息的增加或删除。遗忘门决定哪些信息应被抛弃,输入门控制哪些新信息加入细胞状态,输出门决定基于细胞状态的输出。这种结构使得LSTM能够在更长的序列中有效地学习依赖关系。

四、门控循环单元(GRU)

基本原理

门控循环单元是LSTM的一种简化版本,它将LSTM中的三个门控简化为两个(更新门和重置门),使模型更加高效而不牺牲太多性能。

工作方式

GRU的更新门帮助模型决定在当前状态保留多少旧信息,而重置门决定应忽略多少过去的信息。这种结构简化了参数,减少了计算量,同时保持了对长期依赖的处理能力。

五、生成对抗网络(GAN)

基本原理

生成对抗网络包括两部分:生成器和判别器。生成器生成尽可能逼真的数据,而判别器的任务是区分生成的数据和真实数据。这种对抗过程促使生成器产生高质量的输出。

工作方式

在训练过程中,生成器学习创建数据,判别器学习识别数据是否为真实。生成器的目标是增加判别器犯错误的概率,这个过程形似一个迭代的博弈过程,直至生成器产生的数据以假乱真。

六、变分自编码器(VAE)

基本原理

变分自编码器通过编码器将输入数据压缩成一个潜在空间,并通过解码器重建输入数据。与传统的自编码器不同,VAE在编码器的输出上应用概率分布,提高了模型的生成能力。

工作方式

VAE的编码器部分将输入数据映射到潜在变量的分布参数上,然后从这个分布中采样生成潜在变量,最后解码器根据这些潜在变量重建输入。这种生成的随机性使VAE成为一个强大的生成模型。

七、注意力机制(Attention Mechanism)

基本原理

注意力机制允许模型在处理输入的同时,学习在不同部分放置多少“注意力”,这对于解决NLP中的翻译等问题非常有效。

工作方式

在翻译任务中,注意力机制允许模型在生成每个单词时,聚焦于输入句子的相关部分。这样可以更好地捕捉语境和语义信息,提高翻译质量。

八、Transformer

基本原理

Transformer是一种完全依赖于自注意力机制来处理序列数据的模型。它摒弃了传统的循环层,全部使用注意力层和前馈层。

工作方式

Transformer的核心是自注意力层,它可以并行处理序列中的所有元素,提高了模型的效率和效果。每个元素的输出是其它所有元素经过加权后的总和,权重由元素间的相对关系决定。

九、残差网络(ResNet)

基本原理

残差网络通过引入“跳跃连接”克服了深层网络训练难的问题。这些连接使信号可以直接传播至更深的层。

工作方式

在ResNet中,输入不仅传到下一层,还添加到后面几层的输出上。这种结构使得网络可以训练非常深的网络,提高了性能,防止了训练过程中的梯度消失。

十、U-Net

基本原理

U-Net是一种特别为医学图像分割设计的卷积网络,它的结构呈U形,包括一个收缩路径和一个对称的扩张路径。

工作方式

U-Net的收缩路径捕捉图像内容,扩张路径则允许精确定位。这种结构特别适合处理图像中的小目标,广泛用于医学图像分析领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/690045.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

.net core 使用js,.net core 使用javascript,在.net core项目中怎么使用javascript

.net core 使用js,.net core 使用javascript,在.net core项目中怎么使用javascript 我项目里需要用到“文字编码”,为了保证前端和后端的编码解码不处bug, 所以,我在项目中用了这个 下面推荐之前在.net F4.0时的方法 文章一&#…

js--hasOwnProperty()讲解与使用

@TOC 前言 hasOwnProperty(propertyName)方法 是用来检测属性是否为对象的自有属性 object.hasOwnProperty(propertyName) // true/false 讲解 hasOwnProperty() 方法是 Object 的原型方法(也称实例方法),它定义在 Object.prototype 对象之上,所有 Object 的实例对象都会继…

下载中心表设计

文件表 有哪些文件需要异步生成 文件夹表 添加文件夹功能时使用 权限表 文件权限绑定 对用户来说,下载文件和配置下载管理是两个可直接交互的功能。下载文件包括: 1)添加下载任务(手动开始)。 2)开始…

安卓约束性布局学习

据说这个布局是为了解决各种布局过度前套导致代码复杂的问题的。 我想按照自己想实现的各种效果来逐步学习,那么直接拿微信主页来练手,用约束性布局实现微信首页吧。 先上图 先实现顶部搜索框加号按钮 先实现 在布局中添加一个组件,然后摆放…

Java学习54-关键字this的使用

this是什么 this的作用: 它在方法(准确的说是实例方法或非static的方法)内部使用,表示调用该方法的对象 它在构造器内部使用,表示该构造器正在初始化的对象 this可以调用的结构:成员变量、方法和构造器 什么时候使用this 实…

安徽代理记账公司的专业服务和创新理念

在当今竞争激烈的市场环境中,为了提升企业的运营效率,许多企业开始寻找专业的代理记账公司进行财务管理和记账,本文将介绍一家名为安徽代理记账公司的专业服务和创新理念。 安徽代理记账公司是一家专注于为企业提供全方位会计服务的公司&…

[ 网络通信基础 ]——网络的传输介质(双绞线,光纤,标准,线序)

🏡作者主页:点击! 🤖网络通信基础TCP/IP专栏:点击! ⏰️创作时间:2024年6月8日14点23分 🀄️文章质量:94分 前言—— 在现代通信网络中,传输介质是数据传…

江西代理记账公司的专业服务和优质品质

作为一家专业的代理记账公司,我们始终以“专业、公正、公平”为宗旨,为客户提供全方位的会计咨询服务,我们的服务内容包括但不限于以下几点: 1、代理记账服务:我们拥有丰富的经验和专业知识,能够为企业提供…

【ARM Cache 系列文章 1.2 -- Data Cache 和 Unified Cache 的详细介绍】

请阅读【ARM Cache 及 MMU/MPU 系列文章专栏导读】 及【嵌入式开发学习必备专栏】 文章目录 Data Cache and Unified Cache数据缓存 (Data Cache)统一缓存 (Unified Cache)数据缓存与统一缓存的比较小结 Data Cache and Unified Cache 在 ARM架构中,缓存&#xff08…

一次改SQLMAP的操作

前言 sqlmap这个工具,相信各位大佬们都不陌生,但sqlmap虽好,也时常会有些实际存在但无法注入的地方,这时候就需要我们改它的配置了,今天就以本人遇到的事件进行阐述。 正文 确认注入点 通过一系列测试最终确定这里…

论文高级图表绘制(Python语言,局部放大图)

本文将通过一个具体的示例,展示如何使用Python语言和Matplotlib库来绘制高级图表,包括局部放大图的制作。适用于多条曲线绘制在同一个图表中,但由于数据量过大,导致曲线的细节看不清,需要对细节进行局部放大。如下图: 环境准备 首先,确保你的Python环境中已经安装了以…

PHP超详细安装及应用

目录 所需安装包如下 一、PHP安装 依赖包安装 安装扩展工具(先将PHP所需的软件包全部拖进centos根目录下) 安装libmcrypt 安装mhash 安装mcrypt 安装PHP 二、设置LAMP组件环境(要保证mysql、http都安装完成了) Php.ini的建…

附录二-nmap基本用法

参考 黑客工具—Nmap的使用_哔哩哔哩_bilibili nmap是扫描IP和端口的,相当于攻击前的索敌步骤。不止网络安全方面会用到,平时运维的时候也会用到nmap 1 下载nmap nmap官网 https://nmap.org/ 点击下载,然后点你用的平台就行了 往下滚可以…

Linux环境在非root用户中搭建(java-tomcat-redis)

注: 本文在内网(离线)环境,堡垒机中搭建,服务器不同可能有所差异,仅供参考 本文安装JDK-20.0.1版本,apache-tomcat-10.1.10版本,redis-6.2.15版本 本文服务器IP假设:192.168.88.133 root用户创建子用户并…

stack overflow复现

当你在内存的栈中,存放了太多元素,就有可能在造成 stack overflow这个问题。 今天看看如何复现这个问题。 下图,是我写的程序,不断的创造1KB的栈,来看看执行了多少次,无限循环。 最后结果是7929kB时, 发…

Echarts 可视化图库案例(Make A Pie)

1、Made A Pie Made A Pie 2、可视化社区 (Made A Pie 替代) 可视化社区

标准价与移动平均价简介

一、移动平均价 移动平均价优点: a.移动平均价格可反应”实时的”加权平均价格,特别是物料价格涨跌幅度大时物料的价格不会被差异扭曲。 b.因为是基于交易的实时加权平均计算价格,一般情况下,移动平均价不产生差异,价格相对真实。 c.如果所有的物料都使用…

算法学习笔记(7.7)-贪心算法(Dijkstra算法-最短路径问题)

目录 1.最短路径问题 2.Dijkstra算法介绍 3.Dijkstra算法演示 4.Dijkstra算法的代码示例 1.最短路径问题 图论中的一个经典问题,通常是指在一个加权图中找到从一个起始顶点到目标顶点的最短路径。 单源最短路径问题:给定一个加权图和一个起始顶点&…

AI三巨擘或面临反垄断审查 | 百能云芯

据纽约时报与路透社披露,有内部消息人士指出,美国的相关监管机构已达成共识,计划对OpenAI、微软及英伟达在人工智能(AI)领域的领导地位展开反垄断审查。这一动作被视为AI监管力度加强的明显信号。 根据此项共识&#x…

matlab 计算三维空间点到直线的距离

目录 一、算法原理二、代码实现三、结果展示四、参考链接本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 直线的点向式方程为: x − x 0 m = y