数据结构复习指导之外部排序

目录

外部排序

复习提示

1.外部排序的基本概念

2.外部排序的方法

2.1对大文件排序时使用的排序算法(2016)

3.多路平衡归并与败者树

4.置换-选择排序(生成初始归并段)

4.1置换-选择排序生成初始归并段的实例(2023)

5.最佳归并树

5.1构造三叉哈夫曼树及相关的分析和计算(2013)

5.2实现最佳归并时需补充的虚段数量的分析(2019)

知识回顾


外部排序

复习提示

外部排序可能会考查相关概念、方法和排序过程,外部排序的算法比较复杂,不会在算法设计上进行考查。

本节的主要内容有:

① 外部排序指的是大文件的排序,即待排序的记录存储在外存中,待排序的文件无法一次性装入内存,需要在内存和外存之间进行多次数据交换,以达到排序整个文件的目的。

② 为减少平衡归并中外存读/写次数所采取的方法:增大归并路数和减少归并段个数。

③ 利用败者树增大归并路数。

④ 利用置换-选择排序增大归并段长度来减少归并段个数。

⑤ 由长度不等的归并段进行多路平衡归并,需要构造最佳归并树。

1.外部排序的基本概念

前面介绍过的排序算法都是在内存中进行的(称为内部排序)。

而在许多应用中,经常需要对大文件进行排序,因为文件中的记录很多,无法将整个文件复制进内存中进行排序。

因此,需要将待排序的记录存储在外存上,排序时再把数据一部分一部分地调入内存进行排序,在排序过程中需要多次进行内存和外存之间的交换。

这种排序算法就称为外部排序

2.外部排序的方法

文件通常是按块存储在磁盘上的,操作系统也是按块对磁盘上的信息进行读/写的。

因为磁盘读/写的机械动作所需的时间远远超过在内存中进行运算的时间(相比而言可以忽略不计),

因此在外部排序过程中的时间代价主要考虑访问磁盘的次数,即I/O次数。

2.1对大文件排序时使用的排序算法(2016)

外部排序通常采用归并排序算法。它包括两个阶段:

  • ① 根据内存缓冲区大小,将外存上的文件分成若干长度为 L 的子文件,依次读入内存并利用内部排序算法对它们进行排序,并将排序后得到的有序子文件重新写回外存,称这些有序子文件为归并段或顺串
  • ② 对这些归并段进行逐趟归并,使归并段(有序子文件)逐渐由小到大,直至得到整个有序文件为止。

例如,一个含有 2000个记录的文件,每个磁盘块可容纳 125 个记录,首先通过8次内部排序得到 8个初始归并段 R1~R8,每段都含 250 条记录。

然后对该文件做如图 8.15 所示的两两归并,直至得到一个有序文件。

可以把内存工作区等分为三个缓冲区,如图8.14所示,其中的两个为输入缓冲区,一个为输出缓冲区。

首先,从两个输入归并段R1和 R2 中分别读入一个块,放在输入缓冲区1和输入缓冲区2中。

然后,在内存中进行二路归并,归并后的对象顺序存放在输出缓冲区中。

若输出缓冲区中对象存满,则将其顺序写到输出归并段(R1')中,再清空输出缓冲区,继续存放归并后的对象。

若某个输入缓冲区中的对象取空,则从对应的输入归并段中再读取下一块,继续参加归并。

如此继续,直到两个输入归并段中的对象全部读入内存并都归并完成为止。

当 R1 和 R2 归并完后,再归并 R3 和 R4、R5 和 R6、最后归并 R7和 R8,这是一趟归并。

再把上趟的结果 R1'和 R2'、R3'和 R4'两两归并,这又是一趟归并。

最后把 R1"和 R2"两个归并段归并,得到最终的有序文件,一共进行了3趟归并。

在外部排序中实现两两归并时,由于不可能将两个有序段及归并结果段同时存放在内存中,因此需要不停地将数据读出、写入磁盘,而这会耗费大量的时间。

一般情况下:

                                        外部排序的总时间 = 内部排序的时间 + 外存信息读/写的时间 + 内部归并的时间

显然,外存信息读/写的时间远大于内部排序和内部归并的时间,因此应着力减少 I/O 次数。

由于外存信息的读/写是以“磁盘块”为单位的,因此可知每趟归并需进行 16 次读和 16 次写,3趟归并加上内部排序时所需进行的读/写,使得总共需进行 32x3 +32=128 次读/写。

若改用 4 路归并排序,则只需2趟归并,外部排序时的总读/写次数便减至 32x2+32=96。

因此,增大归并路数,可减少归并趟数,进而减少总的磁盘 I/O 次数,如图 8.16 所示。

一般地,对 r 个初始归并段,做 k 路平衡归并(即每趟将 k 个或 k 个以下的有序子文件归并成一个有序子文件)。

第一趟可将 r 个初始归并段归并为\left \lceil r/k \right \rceil个归并段,以后每趟归并将 m 个归并段归并成\left \lceil m/k \right \rceil个归并段,直至最后形成一个大的归并段为止。

                                                                        树的高度-1=\left \lceil log_kr \right \rceil= 归并趟数S。

可见,只要增大归并路数k,或减少初始归并段个数r,都能减少归并趟数 S,进而减少读/写磁盘的次数,达到提高外部排序速度的目的

 

3.多路平衡归并与败者树

增加归并路数 k 能减少归并趟数 S,进而减少 I/O 次数。

然而,增加归并路数 k 时,内部归并的时间将增加。

做内部归并时,在 k 个元素中选择关键字最小的元素需要k-1次比较。

每趟归并 n 个元素需要做 (n-1)(k-1) 次比较,S趟归并总共需要的比较次数为

                S(n-1)(k-1)=\left \lceil log_kr \right \rceil(n-1)(k-1)=\left \lceil log_2r \right \rceil(n-1)(k-1)/\left \lceil log_2k \right \rceil

式中,(k-1)/\left \lceil log_2k \right \rceil随 k 增长而增长,因此内部归并时间亦随 k 的增长而增长。

这将抵消因增大 k 而减少外存访问次数所得到的效益。因此,不能使用普通的内部归并排序算法。

为了使内部归并不受 k 的增大的影响,引入了败者树

败者树是树形选择排序的一种变体,可视为一棵完全二叉树

k 个叶结点分别存放 k 个归并段在归并过程中当前参加比较的元素,内部结点用来记忆左右子树中的“失败者”,而让胜利者往上继续进行比较,一直到根结点。

若比较两个数,大的为失败者、小的为胜利者,则根结点指向的数为最小数。

如图 8.17(a) 所示,

  • b3 与 b4 比较,b4 是败者,将段号 4 写入父结点 ls[4](l为小写的L,并非大写的i,下面同理)。
  • b1 与 b2 比较,b2 是败者,将段号 2 写入 ls[3]。
  • b3 与 b4的胜者 b3 与 b0 比较,b0 是败者,,将段号0写入 Is[2]。
  • 最后两个胜者 b3 与 b1 比较,b1是败者,将段号1写入Is[1]。
  • 而将胜者b3 的段号3写入 ls[0] 此时,根结点 Is[0] 所指的段的关键字最小。

对于k路归并,初始构造败者树需要k-1次比较。

b3 中的 6 输出后,将下一关键字填入 b3,继续比较。

因为 k 路归并的败者树深度为\left \lceil log_2k \right \rceil+1,所以从 k 个记录中选择最小关键字,仅需进行\left \lceil log_2k \right \rceil次比较。

因此总的比较次数约为

                        ​​​​​​​        ​​​​​​​        S(n-1)\left \lceil log_2k \right \rceil=\left \lceil log_kr \right \rceil(n-1)\left \lceil log_2k \right \rceil=(n-1)\left \lceil log_2r \right \rceil

可见,使用败者树后,内部归并的比较次数与 k 无关了。

因此,只要内存空间允许,增大归并路数 k 将有效地减少归并树的高度,从而减少 I/O 次数,提高外部排序的速度。

值得说明的是,归并路数 k 并不是越大越好。

归并路数 k 增大时,相应地需要增加输入缓冲区的个数。

若可供使用的内存空间不变,势必要减少每个输入缓冲区的容量,使得内存、外存交换数据的次数增大。

当k值过大时,虽然归并趟数会减少,但读/写外存的次数仍会增加。

4.置换-选择排序(生成初始归并段)

从 《外部排序的方法》节的讨论可知,减少初始归并段个数,也可以减少归并趟数 S。

若总的记录个数为n,每个归并段的长度为 l(此l为小写的L,并非大写的i),则归并段的个数r=\left \lceil n/l \right \rceil

采用内部排序算法得到的各个初始归并段长度都相同(除最后一段外),它依赖于内部排序时可用内存工作区的大小。

因此,必须探索新的方法,用来产生更长的初始归并段,这就是本节要介绍的置换-选择算法

4.1置换-选择排序生成初始归并段的实例(2023)

设初始待排文件为FI(此I为大写的i,非小写的L),初始归并段输出文件为FO,内存工作区为 WA,FO 和 WA 的初始状态为空,WA可容纳 w 个记录。

置换-选择算法的步骤如下:

1) 从 FI 输入 w 个记录到工作区 WA。

2) 从 WA 中选出其中关键字取最小值的记录,记为 MINIMAX 记录。

3) 将 MINIMAX 记录输出到 FO 中去。

4) 若 FI 不空,则从 FI 输入下一个记录到 WA 中。

5) 从 WA 中所有关键字比 MINIMAX 记录的关键字大的记录中选出最小关键字记录,作为新的 MINIMAX 记录。

6) 重复 3)~5),直至在 WA 中选不出新的 MINIMAX 记录为止,由此得到一个初始归并段,输出一个归并段的结束标志到FO中去。

7) 重复 2)~6),直至 WA 为空。由此得到全部初始归并段。

设待排文件 FI={17,21,05,44,10,12,56,32,29},WA 容量为3,排序过程如表 8.2 所示。

上述算法,在 WA 中选择 MINIMAX记录的过程需利用败者树来实现。

5.最佳归并树

文件经过置换-选择排序后,得到的是长度不等的初始归并段。

下面讨论如何组织长度不等的初始归并段的归并顺序,使得 I/O 次数最少。

假设由置换-选择排序得到 9个初始归并段,其长度(记录数)依次为9,30,12,18,3,17,2,6,24。

现做 3 路平衡归并,其归并树如图 8.18 所示。

在图 8.18中,各叶结点表示一个初始归并段,上面的权值表示该归并段的长度,叶结点到根的路径长度表示其参加归并的趟数,各非叶结点代表归并成的新归并段,根结点表示最终生成的归并段。

树的带权路径长度 WPL为归并过程中的总读记录数,所以I/O 次数=2xWPL=484。

5.1构造三叉哈夫曼树及相关的分析和计算(2013)

显然,归并方案不同,所得归并树不同,树的带权路径长度(I/O次数)亦不同。

为了优化归并树的 WPL,可以将哈夫曼树的思想推广到 m 又树的情形,在归并树中,让记录数少的初始归并段最先归并,记录数多的初始归并段最晚归并,就可以建立总的 I/O 次数最少的最佳归并树

上述 9 个初始归并段可构造成一棵如图 8.19 所示的归并树,按此树进行归并,仅需对外存进行446 次读/写,这棵归并树便称为最佳归并树。

图 8.19 中的哈夫曼树是一棵严格 3 叉树,即树中只有度为 3 或 0 的结点。

若只有8个初始归并段,如上例中少了一个长度为 30 的归并段。

若在设计归并方案时,缺额的归并段留在最后,即除最后一次做二路归并外,其他各次归并仍是 3 路归并,此归并方案的 I/O 次数为 386。

显然这不是最佳方案。

正确的做法是:若初始归并段不足以构成一棵严格 k 叉树(也称正则 k 叉树)时,需添加长度为 0的“虚段”,按照哈夫曼树的原则,权为0的叶子应离树根最远。

因此,最佳归并树应如图 8.20 所示,此时的 I/O 次数仅为 326。

如何判定添加虚段的数目?

设度为 0 的结点有n_0个,度为k的结点有n_k个,归并树的结点总数为n,则有:

  • n=n_k+n_0        (总结点数 = 度为k的结点数 +度为 0 的结点数)
  • n=kn_k+1        (总结点数 = 所有结点的度数之和+1)

因此,对严格 k 叉树有n_0=(k-1)n_k+1,由此可得n_k=(n_0-1)/(k-1)

若(n0-1)%(k-1)=0(%为取余运算),则说明这n0个叶结点(初始归并段)正好可以构造 k 叉归并树。此时,内结点有n_k个。

若(n0-1)%(k-1)=u≠0,则说明对于这 n0个叶结点,其中有u个多余,不能包含在 k叉归并树中。

为构造包含所有 n0 个初始归并段的 k 叉归并树,应在原有 n_k个内结点的基础上再增加 1 个内结点。

它在归并树中代替了一个叶结点的位置,被代替的叶结点加上刚才多出的 u 个叶结点,即再加上k-u-1个空归并段,就可以建立归并树。

5.2实现最佳归并时需补充的虚段数量的分析(2019)

以图 8.19 为例,用 8 个归并段构成 3 叉树,(n0-1)%(k-1)=(8-1)%(3-1)=1,说明7个归并段刚好可以构成一棵严格 3叉树(假设把以5为根的树视为一个叶子)。

为此,将叶子5变成一个内结点,再添加 3-1-1=1个空归并段,就可以构成一棵严格3叉树。

知识回顾

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/689915.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2. pytorch环境安装

概述 ​ 本文提供基于Anaconda环境Windows11操作系统的Pytorch深度学习环境的配置。深度学习环境分为GPU和CPU两大部分。使用GPU进行环境配置,需要保证电脑配有独立显卡,并且显卡驱动安装正常,详情见前文。 1. 创建新的虚拟环境用来配置Pyt…

【Rust】——面向对象设计模式的实现

🎼个人主页:【Y小夜】 😎作者简介:一位双非学校的大二学生,编程爱好者, 专注于基础和实战分享,欢迎私信咨询! 🎆入门专栏:🎇【MySQL&#xff0…

如何知道ZIP压缩包解压密码?有哪些解密策略?

我们在生活当中,经常会遇到ZIP压缩包,它们以其高效的文件压缩和方便的传输特性而受到广泛欢迎。然而,有时我们可能会遇到一些带有密码保护的ZIP文件,这时就需要知道解压密码才能访问其中的内容。本文将探讨如何知道ZIP压缩包的解压…

Suse Linux ssh配置免密后仍需要输入密码

【问题描述】 Suse Linux已经配置了ssh免密,但无法ssh到目标服务器。 对自身的ssh登陆也需要输入密码。 系统–Suse 15 SP5 【重现步骤】 1.使用ssh-keygen -t rsa生产key文件 2.使用ssh-copy-id拷贝public key到目标机器(或者自身) 3.配置成功后ssh 目标时仍需要输…

使用亮数据代理IP爬取PubMed文章链接和邮箱地址

💂 个人网站:【 摸鱼游戏】【神级代码资源网站】【工具大全】🤟 一站式轻松构建小程序、Web网站、移动应用:👉注册地址🤟 基于Web端打造的:👉轻量化工具创作平台💅 想寻找共同学习交…

Tensorflow音频分类

tensorflow https://www.tensorflow.org/lite/examples/audio_classification/overview?hlzh-cn 官方有移动端demo 前端不会 就只能找找有没有java支持 注意版本 注意JDK版本 package com.example.demo17.controller;import org.tensorflow.*; import org.tensorflow.ndarra…

【Java面试】九、微服务篇-SpringCloud(上)

文章目录 1、SpringCloud五大组件2、服务注册和发现2.1 Eurake2.2 Eurake和Nacos的区别 3、Ribbon负载均衡3.1 策略3.2 自定义负载均衡策略 4、服务雪崩与熔断降级4.1 服务雪崩4.2 服务降级4.3 服务熔断 5、服务限流5.1 Nginx限流5.2 网关限流 6、微服务监控7、面试 1、SpringC…

【Python报错】已解决ModuleNotFoundError: No module named ‘xxx‘ in Jupyter Notebook

解决Python报错:ModuleNotFoundError: No module named ‘xxx’ in Jupyter Notebook 在使用Jupyter Notebook进行数据分析或科学计算时,我们经常需要导入各种Python模块。如果你遇到了ModuleNotFoundError: No module named xxx的错误,这通常…

[word] word如何清除超链接 #媒体#笔记#知识分享

word如何清除超链接 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享下word如何清除超链接的操作办法,一起来学习下吧! 1、清除所有超链接 按下组合键CtrlshiftF9,就可以将网上复制带有超链…

Rust 标记一个属性或函数为废弃

如题,演示Rust 标记一个属性或函数为废弃的基本使用方法: 示例: use serde::{Deserialize, Serialize};#[derive(Clone, Debug, Serialize, Deserialize, Default)] pub struct GrpcOptions {pub addr: String,pub max_recv_message_size: u…

【JavaScript函数详解】Day04

JavaScript函数详解 JavaScript 基础 - 第4天笔记函数声明和调用声明(定义)调用 参数形参和实参参数默认值 返回值函数补充细节作用域全局作用域局部作用域变量的访问原则 匿名函数函数表达式立即执行函数 逻辑中断小知识(转换为Boolean型&am…

企业应如何选择安全合规的内外网文件摆渡系统?

网络隔离是一种安全措施,旨在将网络划分为不同的部分,以减少安全风险并保护敏感信息。常见的隔离方式像物理隔离、逻辑隔离、防火墙隔离、虚拟隔离、DMZ区隔离等,将网络隔离成内网和外网。内外网文件摆渡通常指在内部网络(内网&am…

【吊打面试官系列】CHAR 和 VARCHAR 的区别?

大家好,我是锋哥。今天分享关于 【CHAR 和 VARCHAR 的区别?】面试题,希望对大家有帮助; CHAR 和 VARCHAR 的区别? 1、CHAR 和 VARCHAR 类型在存储和检索方面有所不同 1000道 互联网大厂Java工程师 精选面试题-Java资源…

【吊打面试官系列】MySQL 中 InnoDB 支持的四种事务隔离级别名称,以及逐级之间的区别?

大家好,我是锋哥。今天分享关于 【MySQL 中 InnoDB 支持的四种事务隔离级别名称,以及逐级之间的区别?】面试题,希望对大家有帮助; MySQL 中 InnoDB 支持的四种事务隔离级别名称,以及逐级之间的区别&#xf…

【机器学习】深度卷积生成对抗网络(DCGAN)用于图像生成

1. 引言 1.1 DGGAN是什么? DGGAN(Directed Graph embedding framework based on Generative Adversarial Network)是一种基于生成对抗网络(GAN)的有向图嵌入方法: 基本定义:DGGAN是一种结合了…

【中篇】从 YOLOv1 到 YOLOv8 的 YOLO 物体检测模型历史

YOLO 型号之所以闻名遐迩,主要有两个原因:其速度和准确性令人印象深刻,而且能够快速、可靠地检测图像中的物体。上回我解释了Yolo v1, 今天从Yolov2开始。 YOLOv2:更好、更快、更强 2017 年 7 月一个闷热的星期二下午,雷德蒙(Joseph Redmon, Yolo创始人)再次走上舞台。 …

【微信小程序开发】小程序中的上滑加载更多,下拉刷新是如何实现的?

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…

Socket编程权威指南(二)完美掌握TCP流式协议及Socket编程的recv()和send()

在上一篇文章中,我们学习了Socket编程的基础知识,包括创建Socket、绑定地址、监听连接、接收连接等操作。然而,真正的套接字编程远不止于此。本文将重点介绍TCP 流式协议,什么是粘包问题?如何解决粘包问题 &#xff1f…

俄罗斯服务器租用攻略:选择优质服务器,开启海外市场新征程

随着国际贸易的不断发展,俄罗斯作为一个重要的贸易伙伴备受关注。许多企业和公司为了开拓海外市场,选择将业务拓展到俄罗斯,而在这个过程中,租用一台优质的服务器成为了必须面对的问题。俄罗斯作为一个经济发展迅速的国家&#xf…

Chrome DevTools解密:成为前端调试大师的终极攻略

Chrome DevTools是一套内置于Google Chrome浏览器中的开发者工具,它允许开发者对网页进行调试、分析和优化。本文将全面介绍DevTools的功能、使用方法以及注意事项,帮助开发者更好地利用这些工具来提升开发效率和网页性能。 一、简介 1. DevTools是什么…