C++青少年简明教程:C++函数

C++青少年简明教程:C++函数

C++函数是一段可重复使用的代码,用于执行特定的任务,可以提高代码的可读性和可维护性。函数可以接受参数(输入)并返回一个值(输出),也可以没有参数和返回值。

按函数是否由系统定义:分为库函数(系统函数)和自定义函数。

C++ 标准库提供了大量的程序可以调用的内置函数。例如,函数 strcat() 用来连接两个字符串,函数 memcpy() 用来复制内存到另一个位置。

本文重点介绍自定义函数。

函数定义(Function Definition)格式

<返回类型> <函数名>(<参数列表>)

{

     函数体,执行具体的操作

}

函数定义包括函数的返回类型、名称、参数列表和函数体。

参数列表包括函数接受的参数的类型和名称。可以有零个或多个参数,每个参数由类型和名称组成,并用逗号分隔。

对于C++,main 函数(是程序的入口点)的类型必须是 int。对于自定义函数,函数类型可以是任何类型,包括 void(表示没有返回值)和其他基本数据类型(如 int、float 等等)。如果函数有返回值,则必须在函数体中使用 return 语句返回相应类型的值。在函数体中使用 return 语句时会将程序的执行控制权返回到调用该函数的地方,接着执行调用该函数的语句后面的代码。对于void类型的自定义函数,可以省略 return 语句或者使用“ return;”语句显式地表示函数的结束。

在C++中,函数声明(函数原型声明)是指在使用函数之前提供函数原型的过程。它包括函数的名称、参数列表和返回类型的描述,用于告诉编译器如何调用该函数。当函数的实现位于调用它的代码之后时,你需要提前声明这个函数,告诉编译器这个函数存在。C++函数头文件通常包含函数声明,以便在其他文件中引用和使用这些函数。

函数声明的一般形式为:

返回类型 函数名(参数列表);

例如:

int add(int a, int b); // 声明一个名为 add 的函数,它接受两个 int 类型的参数并返回一个 int 类型的值

【在C++中,用关键字extern可以进行函数声明,但这不是必须的,例如,“extern int add(int a, int b);”。在C++中,如果没有函数体的函数声明,通常都被认为是extern的。

对于函数声明,可以省略参数名,只保留参数类型。所以int js(int n);和int js(int);是等价的。】

函数声明和函数的定义在形式上的区别函数声明没有函数体。函数定义:

int add(int a, int b) {

    return a + b; // 实现 add 函数,返回两个参数的和

}

函数声明是指提供函数原型的过程,用于告诉编译器有一个函数的存在和基本信息;而函数定义是给出函数具体实现的过程,包括函数头和函数体,用于描述函数的行为和实现。

函数调用(Function Call):

当你想在程序中使用函数时,你会"调用"它。调用函数时,你需要提供必要的参数(如果有的话)——实参。例如:

add(5, 3);

函数的形参和实参

函数的形参(形式参数)是在函数定义中声明的参数,它们用来接受函数调用时传递的实参值。形参在函数执行时起到的是占位符的作用,它们的值在函数调用时由相应的实参传递进来。

函数的实参(实际参数)是在函数调用中传递给函数的值或变量。实参可以是常量、变量、表达式、函数返回值等。当函数被调用时,实参的值被传递给形参,函数将使用这些值进行运算或处理,并可能返回一个结果。

例子:

#include <iostream>
using namespace std;

// 函数声明
int add(int a, int b); 

int main() {
    int x = 5;
    int y = 10;
    int sum = add(x, y); //函数调用 ,x 和 y 是实参,它们的值被传递给 add 函数的形参 a 和 b
    cout << "和: " << sum << endl;
    
    return 0;
}

// 函数定义
int add(int a, int b) {
    return a + b;
}

运行效果:

函数声明(Function Declaration)和函数定义(Function Definition)是两个不同的概念。

函数声明告诉编译器函数的名称、返回类型以及它接受哪些参数。但它不包含函数的实际代码。函数声明通常出现在函数被调用之前,以便编译器知道函数的存在和它的签名(即它的参数和返回类型)。

函数定义提供了函数的实际代码,即函数体。它包含了函数如何执行其任务的详细信息。函数定义也可以被视为函数的完整签名加上函数体。

函数定义中的函数名、返回类型以及参数列表必须与相应的函数声明完全匹配(除了某些特殊情况,如内联函数或模板函数)

在大型程序中,通常将函数声明放在头文件中,而函数定义放在源文件中。这样,其他源文件可以通过包含相应的头文件来使用该函数。

函数调用(Function Call)是执行已定义函数的方式。函数调用时,程序将控制权交给函数,并在函数执行完毕后返回。函数调用作为语句、表达式和参数的使用示例:

#include <iostream>
using namespace std;

int add(int a, int b) {
    return a + b;
}

void printMessage() {
    cout << "Hello, World!" << endl;
}

void displayResult(int result) {
    cout << "Result: " << result << endl;
}

int main() {
    printMessage();  // 作为语句

    int sum = add(5, 3);  // 作为表达式的一部分
    displayResult(sum);   // 作为参数传递

    displayResult(add(2, 2));  // 嵌套使用:作为参数传递时作为表达式的一部分

    return 0;
}

输出结果:

Hello, World!
Result: 8
Result: 4

C++函数参数的传递方式

函数参数传递是指在函数调用时,将实际参数(也称为实参)的值或引用传递给函数的形式参数(也称为形参)的过程。在C++中,当调用一个函数时,你需要提供与函数声明中指定的形参类型和数量相匹配的实参。这些实参可以是变量、常量、表达式或字面值等。

当调用函数时,传递参数的方式有:

1. 值传递(Pass by Value)/传值

将实参的值复制一份传给形参,在函数内对形参进行操作,不会影响到实参。在这种情况下,修改函数内的形式参数对实际参数没有影响。

#include <iostream>
using namespace std; 

void add(int a, int b) {
    cout << "a + b = " << a + b << endl;  
}

int main() {
    int x = 5, y = 10;
    add(x, y); // 值传递方式调用函数
    return 0;
}

2. 引用传递(Pass by Reference)/传地址

将实参的地址传递给形参,在函数内对形参进行操作,就是直接对实参操作。这意味着,修改形式参数会影响实际参数。

#include <iostream>
using namespace std; 

void increment(int &num) {
    num++; // 修改 num 的值
}

int main() {
    int a = 5;
    increment(a); // 引用传递方式调用函数
    cout << "a = " << a << endl; // 输出 a 的值
    return 0;
}

需要注意的是,在使用引用传递方式时,要确保传递的实参是一个变量而非常量或表达式的值。例如,以下代码是无效的:

increment(2 + 3); // 无法编译通过,因为2 + 3不是一个变量

3. 指针传递(Pass by Pointer)/传指针

指针传递(Pass by Pointer)通过传递指向实参的指针,让函数能够访问和修改实参的值。这意味着,修改形式参数会影响实际参数。关于指针以后介绍。

#include <iostream>
using namespace std; 

void increment(int* ptr) {
    (*ptr)++; // 修改 *ptr 所指向的变量的值
}

int main() {
    int a = 5;
    int* ptr = &a;
    increment(ptr); // 通过指针传递实参
    cout << "a = " << a << endl; // 输出 a 的值
    return 0;
}

在 increment 函数中,通过解引用运算符 (*ptr) 访问了实参 a 的值,并对其进行了修改。在 main 函数中,定义了整型变量 a 和指向 a 的指针 ptr,将 ptr 作为参数通过指针传递给了 increment 函数。最后输出了 a 的值,结果为 6。

提示:引用传递和指针传递都是将实参的地址传递给形参。不同的是,引用传递使用了引用类型,而指针传递使用了指针类型。在函数内部,引用和指针都可以用于访问和修改实参的值。具体一点说,通过引用传递,函数形参会成为实参的别名,即形参与实参指向同一块内存空间,在函数内部对形参的修改会直接反映在实参上。通过指针传递,实际参数的地址被复制到指针形参中,通过解引用指针可以访问和修改实参的值。

在大多数情况下,引用传递比值传递需要更少的内存,并更有效。传递指针也是一种传递地址的方式,但是引用更容易使用,并且更不容易出错。

函数参数的默认值

在C++编程中,在定义函数时,可以为函数参数设置默认值。如果在调用函数时未传递参数,则使用默认值。例如:

#include <iostream>
using namespace std;

int sum(int a, int b = 6 ){
    return ( a + b );
}

int main (){
    // 局部变量声明

    int a = 10;
    int b = 20;
    int result;

    // 调用函数计算和

    result = sum(a, b);
    cout << "sum = " << result << endl; //sum = 30 

    // 再次调用函数
    result = sum(a);
    cout << "sum = " << result << endl; //sum = 16

    return 0;
}

C++变量的作用域

C++中变量的作用域是指变量在程序中能够被访问到的范围。按变量的作用域可以将变量分为:

局部变量:变量在某个函数内部定义,只能在该函数内部访问,称为局部变量。

下面是使用了局部变量的例子:

#include <iostream>
using namespace std;
 int main (){
  // 局部变量声明
  int a, b;
  int c;
 
  // 实际初始化
  a = 10;
  b = 20;
  c = a + b;
 
  cout << c;
 
  return 0;
}

全局变量:在所有函数外部定义的变量(通常是在程序的头部),称为全局变量。全局变量一旦声明,在整个程序中都是可用的。

下面是使用了全局变量的例子:

#include <iostream>
using namespace std;

//全局变量
int x = 20;

void func(){
    int x = 10;  //函数内部的局部变量

    cout << "局部变量 x 的值为 : " << x << endl;  //输出 10
    cout << "全局变量 x 的值为 : " << ::x << endl;  //输出 20
}

int main(){
    cout << "初始全局变量 x 的值为 : " << x << endl;  //输出 20
    func();  //调用函数
    cout << "调用函数后的全局变量 x 的值为 : " << x << endl;  //输出 20
    
return 0;
}

示例中,定义了一个全局变量 x,它的值为 20。然后,在 func() 函数内定义了一个名称相同的局部变量 x,它的值为 10。当 func() 函数被调用时,它将输出局部变量 x 和全局变量 x 的值。从输出可以看出,程序优先使用函数内部的局部变量 x,而不是全局变量 x。如果需要使用或修改全局变量的值,则需要在函数中使用作用域解析运算符 :: 来引用全局变量。

在主函数中,我们首先输出全局变量 x 的值,然后调用函数 func()。在调用函数之后,我们再次输出全局变量 x 的值,以此证明函数内部对全局变量的修改并不会影响它的值。从输出可以看出,函数 func() 对全局变量 x 的修改并没有影响它的值,它的值仍然是 20。

练习、判断一个年份是否为闰年是一个常见的编程问题。闰年的规则是:

如果年份能被4整除但不能被100整除,则为闰年。

如果年份能被400整除,也是闰年。

以前(“If选择语句”一节中)提到过这个例子,现在采用自定义函数的方式实现,判断用户输入的年份是否为闰年:

#include <iostream>  
using namespace std;
  
bool isLeapYear(int year) {  
    if ((year % 4 == 0 && year % 100 != 0) || (year % 400 == 0)) {  
        return true;  
    } else {  
        return false;  
    }  
}  
  
int main() {  
    int year;  
    cout << "请输入一个年份: ";  
    cin >> year;  
  
    if (isLeapYear(year)) {  
        cout << year << " 是闰年." << endl;  
    } else {  
        cout << year << " 不是闰年." << endl;  
    }  
  
    return 0;  
}

这个程序中,isLeapYear 函数接受一个整数年份作为参数,并返回一个布尔值,表示该年份是否为闰年。main 函数则负责获取用户输入的年份,并调用 isLeapYear 函数进行判断,然后输出相应的结果。

递归函数

在编程中,一个函数直接或间接地调用自身,函数称为递归函数,这种技术被称为递归。

递归函数通常包含两个部分:

基本情况(Base Case):这是递归的终止条件,即当函数达到某个条件时,它将不再调用自身,而是直接返回结果。没有基本情况,递归函数将会无限地调用自身,导致栈溢出错误。

递归步骤(Recursive Step):这是函数的主体部分,其中包含了将问题分解为更小子问题的逻辑,并调用自身(称为Recursive call:递归调用)来处理这些子问题。

简单地说,递归是一种函数调用自身的过程。递归函数或算法必须调用自身来解决规模更小的子问题。

我们可以使用一个例子来说明。比如,我们要计算从1到某个数n的总和。

1.我们可以创建一个自定义函数sum,它接受一个参数n,代表要计算总和的范围。

2.在函数内部,我们需要添加一些基本条件来结束递归。在这种情况下,如果n等于1,我们直接返回1。

3.如果n大于1,我们将函数自己调用,并传入n-1作为参数,并将结果与n相加。

4.这个过程会一直进行下去,直到n等于1,然后每个递归函数的返回值都会被加起来。

最后,我们只需调用这个函数并打印出结果即可。

#include <iostream>
using namespace std;

int sum(int n) {
    if (n == 1) {
        return 1;
    }
    else {
        return n + sum(n - 1);
    }
}

int main() {
    int num = 5;  // 假设我们要计算1到5的总和
    int result = sum(num);
    cout << "从1到" << num << "的总和为:" << result << endl;

    return 0;
}

计算阶乘

阶乘(Factorial)是指将一个正整数 n 及小于等于 n 的所有正整数相乘的结果。符号通常用符号 "!" 表示。例如,4的阶乘(写作4!)是4*3*2*1=24。

C++函数来计算阶乘的函数:

int factorial(int n) {
    if (n == 0) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}

这个函数的工作方式是这样的:

首先,它检查数字n是否为0。如果是,它返回1。这是因为0的阶乘被定义为1。

如果n不是0,那么函数会返回n乘以n-1的阶乘。这就是递归的部分:函数调用了自己,但是每次调用时,n都会减少1。

例如,如果我们调用factorial(4),函数会这样工作:

factorial(4)返回4 * factorial(3)

factorial(3)返回3 * factorial(2)

factorial(2)返回2 * factorial(1)

factorial(1)返回1 * factorial(0)

factorial(0)返回1

所以,factorial(3)的结果是4*3 * 2 * 1 * 1 = 24。

图示如下:

下面给出求一个数的阶乘完整代码

使用递归的完整代码:

#include <iostream>
using namespace std;

int factorial(int n) {
    if (n == 0) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}

int main() {
    int n;
    cout << "请输入一个正整数: ";
    cin >> n;
    cout << "该数的阶乘为: " << factorial(n) << endl;
    return 0;
}

这个递归示例中,函数名为 factorial,表示计算一个数的阶乘。当输入的参数 n 等于 0 时,是递归的基本情况,递归将结束并返回 1。当 n 不是 0 时,函数将调用自身并传入 n-1 作为参数,直到 n 等于 0。然后递归将回溯,并将每个递归调用返回的值合并,并返回给原始调用者。

作为对比,下面给出非递归实现的代码:

#include <iostream>
using namespace std;

int factorial(int n) {
    int result = 1;
    for (int i = 1; i <= n; i++) {
        result *= i;
    }
    return result;
}

int main() {
    int n;
    cout << "请输入一个正整数: ";
    cin >> n;
    cout << "该数的阶乘为: " << factorial(n) << endl;
    return 0;
}

OK!

附、C++函数https://blog.csdn.net/cnds123/article/details/108917528

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/688607.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

范闲获取到庆帝与神庙的往来信件,用AES进行破解

关注微信公众号 数据分析螺丝钉 免费领取价值万元的python/java/商业分析/数据结构与算法学习资料 在《庆余年2》中&#xff0c;范闲与庆帝和神庙之间的权谋斗争愈演愈烈。一次偶然的机会&#xff0c;范闲从庆帝的密室中获取到几封与神庙往来的密信。然而&#xff0c;这封信件…

算法-分治策略

概念 分治算法&#xff08;Divide and Conquer&#xff09;是一种解决问题的策略&#xff0c;它将一个问题分解成若干个规模较小的相同问题&#xff0c;然后递归地解决这些子问题&#xff0c;最后合并子问题的解得到原问题的解。分治算法的基本思想是将复杂问题分解成若干个较…

电源变压器的作用和性能

电源变压器的主要作用是改变输入电压的大小&#xff0c;通常用于降低电压或升高电压&#xff0c;以便适应不同设备的需求。它们还可以提供隔离&#xff0c;使得输出电路与输入电路之间电气隔离&#xff0c;从而提高安全性。性能方面&#xff0c;电源变压器需要具有高效率、低温…

二叉树-堆的详解

一&#xff0c;树的概念 1&#xff0c;树的概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。 把它叫做树是因为它看起来像一棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;而叶朝下的。 有…

小学一年级数学上册,我终于学完了

目录 一、背景二、过程1.我对课程中的一些知识的思考2.我对于产品的思考3.我对自己儿子与知识产品结合的思考4.产品反馈的那些有意思的数据 三、总结 一、背景 简约而不简单&#xff0c;即是曾经的再现&#xff0c;也是未来的延伸&#xff0c;未来已来&#xff0c;就在脚下。 …

泛微开发修炼之旅--10基于Ecology实现附件上传,并将上传后的文件id存入表单附件控件中的示例及源码

文章链接&#xff1a;泛微开发修炼之旅--10基于Ecology实现附件上传&#xff0c;并将上传后的文件id存入表单附件控件中的示例及源码

微信如何防止被对方拉黑删除?一招教你解决!文末附软件!

你一定不知道&#xff0c;微信可以防止被对方拉黑删除&#xff0c;秒变无敌。只需一招就能解决&#xff01;赶快来学&#xff01;文末有惊喜&#xff01; 惹到某些重要人物&#xff08;比如女朋友&#xff09;&#xff0c;被删除拉黑一条龙&#xff0c;那真的是太令人沮丧了&a…

如何快速学习掌握PMP考试知识?

要快速学习掌握PMP考试知识&#xff0c;有几个关键的步骤和方法可以帮助大家有效地准备考试。 首先&#xff0c;建议你购买一本权威的PMP考试教材&#xff0c;例如PMBOK指南。这本教材是PMP考试的权威指南&#xff0c;包含了所有考试所需的知识点和内容。你可以通过系统地阅读…

Unity3D测量距离实现方法(一)

系列文章目录 unity工具 文章目录 系列文章目录&#x1f449;前言&#x1f449;一、Unity距离测量1-1 制作预制体1-2 编写测量的脚本 &#x1f449;二、鼠标点击模型进行测量&#x1f449;二、字体面向摄像机的方法&#x1f449;二、最短距离测量方法&#x1f449;三、壁纸分享…

【WP】猿人学_16_js逆向_window蜜罐

https://match.yuanrenxue.cn/match/16 抓包分析 荷载一个加密参数&#xff0c;一个时间戳 时间: 2024-06-07 15:52:31时间戳: 1717746751 1717746751000时间戳和现在对得上&#xff0c;直接生成就行。 追栈 追栈找m的生成位置。 点进去打断点&#xff0c;重新点击其他…

算法导论实战(三)(算法导论习题第二十四章)

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;算法启示录 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 前言 第二十四章 24.1-3 24.1-4 2…

【TB作品】MSP430G2553单片机,MSP430 单片机读取 SHT30 传感器并显示数据

使用 MSP430 单片机读取 SHT30 传感器并显示数据 作品功能 本文介绍了如何使用 MSP430 单片机读取 SHT30 温湿度传感器的数据&#xff0c;并通过 OLED 屏幕显示实时的温度和湿度信息。通过此项目&#xff0c;您将学习如何配置 MSP430 的 I2C 接口、读取 SHT30 传感器的数据以…

Linux 中常用的设置、工具和操作

1.设置固定的ip地址步骤 1.1 添加IPADDR“所设置的固定ip地址” TYPE"Ethernet" PROXY_METHOD"none" BROWSER_ONLY"no" BOOTPROTO"static" DEFROUTE"yes" IPV4_FAILURE_FATAL"no" IPV6INIT"yes" IPV6…

【Vue】作用域插槽

插槽分类 默认插槽&#xff1a;组件内定制一处结构 具名插槽&#xff1a;组件内定制多处结构 插槽只有两种&#xff0c;作用域插槽不属于插槽的一种分类。作用域插槽只是插槽的一个传参语法 作用&#xff1a; 定义slot 插槽的同时, 是可以传值的。给 插槽 上可以 绑定数据&a…

SOA主要协议和规范

Web服务作为实现SOA中服务的最主要手段。首先来了解Web Service相关的标准。它们大多以“WS-”作为名字的前缀&#xff0c;所以统称“WS-*”。Web服务最基本的协议包括UDDI、WSDL和SOAP&#xff0c;通过它们&#xff0c;可以提供直接而又简单的Web Service支持&#xff0c;如图…

外部mysql导入

利用这个命令&#xff1a; mysql -u username -p database_name < file.sql 然后就这样。成功导入。

Rocky Linux安装与基础配置

目录 背景与起源 主要特点 目标用户 发展前景 下载 安装 常用配置命令&#xff1a; 更换镜像源 Rocky Linux 是一个开源的、由社区驱动的操作系统&#xff0c;旨在使用 Red Hat Enterprise Linux&#xff08;RHEL&#xff09;源码构建的下游二进制兼容发行版。以下是关于…

vue3 监听器,组合式API的watch用法

watch函数 在组合式 API 中&#xff0c;我们可以使用 watch 函数在每次响应式状态发生变化时触发回调函数 watch(ref,callback&#xff08;newValue,oldValue&#xff09;&#xff0c;option:{}) ref:被监听的响应式量&#xff0c;可以是一个 ref (包括计算属性)、一个响应式…

Linux Mint 默认禁用未经验证的 Flatpak 软件包

Linux Mint 默认禁用未经验证的 Flatpak 软件包 Linux Mint 新政策 Linux Mint 项目宣布了一项新政策&#xff0c;即默认禁用那些未经官方验证的 Flatpak 软件包&#xff0c;以增强用户的安全保障。 当用户选择启用未经验证的 Flatpak 软件包时&#xff0c;Linux Mint 的软…

ceph radosgw 原有zone placement信息丢失数据恢复

概述 近期遇到一个故障环境&#xff0c;因为某些原因&#xff0c;导致集群原有zone、zonegroup等信息丢失&#xff08;osd&#xff0c;pool等状态均健康&#xff09;。原有桶和数据无法访问&#xff0c;经过一些列fix后修复&#xff0c; 记录过程 恢复realm和pool相关信息 重…