竞赛项目 深度学习图像风格迁移

文章目录

  • 0 前言
  • 1 VGG网络
  • 2 风格迁移
  • 3 内容损失
  • 4 风格损失
  • 5 主代码实现
  • 6 迁移模型实现
  • 7 效果展示
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习图像风格迁移 - opencv python

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

图片风格迁移指的是将一个图片的风格转换到另一个图片中,如图所示:

在这里插入图片描述
原图片经过一系列的特征变换,具有了新的纹理特征,这就叫做风格迁移。

1 VGG网络

在实现风格迁移之前,需要先简单了解一下VGG网络(由于VGG网络不断使用卷积提取特征的网络结构和准确的图像识别效率,在这里我们使用VGG网络来进行图像的风格迁移)。

在这里插入图片描述
如上图所示,从A-
E的每一列都表示了VGG网络的结构原理,其分别为:VGG-11,VGG-13,VGG-16,VGG-19,如下图,一副图片经过VGG-19网络结构可以最后得到一个分类结构。

在这里插入图片描述

2 风格迁移

对一副图像进行风格迁移,需要清楚的有两点。

  • 生成的图像需要具有原图片的内容特征
  • 生成的图像需要具有风格图片的纹理特征

根据这两点,可以确定,要想实现风格迁移,需要有两个loss值:
一个是生成图片的内容特征与原图的内容特征的loss,另一个是生成图片的纹理特征与风格图片的纹理特征的loss。

而对一张图片进行不同的特征(内容特征和纹理特征)提取,只需要使用不同的卷积结构进行训练即可以得到。这时我们需要用到两个神经网络。

再回到VGG网络上,VGG网络不断使用卷积层来提取特征,利用特征将物品进行分类,所以该网络中提取内容和纹理特征的参数都可以进行迁移使用。故需要将生成的图片经过VGG网络的特征提取,再分别针对内容和纹理进行特征的loss计算。

在这里插入图片描述
如图,假设初始化图像x(Input image)是一张随机图片,我们经过fw(image Transform Net)网络进行生成,生成图片y。
此时y需要和风格图片ys进行特征的计算得到一个loss_style,与内容图片yc进行特征的计算得到一个loss_content,假设loss=loss_style+loss_content,便可以对fw的网络参数进行训练。

现在就可以看网上很常见的一张图片了:

在这里插入图片描述
相较于我画的第一张图,这即对VGG内的loss求值过程进行了细化。

细化的结果可以分为两个方面:

  • (1)内容损失
  • (2)风格损失

3 内容损失

由于上图中使用的模型是VGG-16,那么即相当于在VGG-16的relu3-3处,对两张图片求得的特征进行计算求损失,计算的函数如下:

在这里插入图片描述

简言之,假设yc求得的特征矩阵是φ(y),生成图片求得的特征矩阵为φ(y^),且c=φ.channel,w=φ.weight,h=φ.height,则有:

在这里插入图片描述

代码实现:

def content_loss(content_img, rand_img):
    content_layers = [('relu3_3', 1.0)]
    content_loss = 0.0
    # 逐个取出衡量内容损失的vgg层名称及对应权重
    for layer_name, weight in content_layers:

        # 计算特征矩阵
        p = get_vgg(content_img, layer_name)
        x = get_vgg(rand_img, layer_name)
        # 长x宽xchannel
        M = p.shape[1] * p.shape[2] * p.shape[3]

        # 根据公式计算损失,并进行累加
        content_loss += (1.0 / M) * tf.reduce_sum(tf.pow(p - x, 2)) * weight

    # 将损失对层数取平均
    content_loss /= len(content_layers)
    return content_loss

4 风格损失

风格损失由多个特征一同计算,首先需要计算Gram Matrix

在这里插入图片描述
Gram Matrix实际上可看做是feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature
map中,每一个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字就代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram有助于把握整个图像的大体风格。有了表示风格的Gram
Matrix,要度量两个图像风格的差异,只需比较他们Gram Matrix的差异即可。 故在计算损失的时候函数如下:

在这里插入图片描述
在实际使用时,该loss的层级一般选择由低到高的多个层,比如VGG16中的第2、4、7、10个卷积层,然后将每一层的style loss相加。

在这里插入图片描述
第三个部分不是必须的,被称为Total Variation
Loss。实际上是一个平滑项(一个正则化项),目的是使生成的图像在局部上尽可能平滑,而它的定义和马尔科夫随机场(MRF)中使用的平滑项非常相似。
其中yn+1是yn的相邻像素。

代码实现以上函数:

# 求gamm矩阵
def gram(x, size, deep):
    x = tf.reshape(x, (size, deep))
    g = tf.matmul(tf.transpose(x), x)
    return g

def style_loss(style_img, rand_img):
    style_layers = [('relu1_2', 0.25), ('relu2_2', 0.25), ('relu3_3', 0.25), ('reluv4_3', 0.25)]
    style_loss = 0.0
    # 逐个取出衡量风格损失的vgg层名称及对应权重
    for layer_name, weight in style_layers:

        # 计算特征矩阵
        a = get_vgg(style_img, layer_name)
        x = get_vgg(rand_img, layer_name)

        # 长x宽
        M = a.shape[1] * a.shape[2]
        N = a.shape[3]

        # 计算gram矩阵
        A = gram(a, M, N)
        G = gram(x, M, N)

        # 根据公式计算损失,并进行累加
        style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight
    # 将损失对层数取平均
    style_loss /= len(style_layers)
    return style_loss

5 主代码实现

代码实现主要分为4步:

  • 1、随机生成图片

  • 2、读取内容和风格图片

  • 3、计算总的loss

  • 4、训练修改生成图片的参数,使得loss最小

      * def main():
            # 生成图片
            rand_img = tf.Variable(random_img(WIGHT, HEIGHT), dtype=tf.float32)
            with tf.Session() as sess:
    
                content_img = cv2.imread('content.jpg')
                style_img = cv2.imread('style.jpg')
            
                # 计算loss值
                cost = ALPHA * content_loss(content_img, rand_img) + BETA * style_loss(style_img, rand_img)
                optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)
            
                sess.run(tf.global_variables_initializer())
                
                for step in range(TRAIN_STEPS):
                    # 训练
                    sess.run([optimizer,  rand_img])
            
                    if step % 50 == 0:
                        img = sess.run(rand_img)
                        img = np.clip(img, 0, 255).astype(np.uint8)
                        name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"
                        cv2.imwrite(name, img)
    
    
    

    6 迁移模型实现

由于在进行loss值求解时,需要在多个网络层求得特征值,并根据特征值进行带权求和,所以需要根据已有的VGG网络,取其参数,重新建立VGG网络。
注意:在这里使用到的是VGG-19网络:

在重建的之前,首先应该下载Google已经训练好的VGG-19网络,以便提取出已经训练好的参数,在重建的VGG-19网络中重新利用。

在这里插入图片描述
下载得到.mat文件以后,便可以进行网络重建了。已知VGG-19网络的网络结构如上述图1中的E网络,则可以根据E网络的结构对网络重建,VGG-19网络:

在这里插入图片描述
进行重建即根据VGG-19模型的结构重新创建一个结构相同的神经网络,提取出已经训练好的参数作为新的网络的参数,设置为不可改变的常量即可。

def vgg19():
    layers=(
        'conv1_1','relu1_1','conv1_2','relu1_2','pool1',
        'conv2_1','relu2_1','conv2_2','relu2_2','pool2',
        'conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3',
        'conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4',
        'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5'
    )
    vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')
    weights = vgg['layers'][0]

    network={}
    net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)
    network['input'] = net
    for i,name in enumerate(layers):
        layer_type=name[:4]
        if layer_type=='conv':
            kernels = weights[i][0][0][0][0][0]
            bias = weights[i][0][0][0][0][1]
            conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)
            net=tf.nn.relu(conv + bias)
        elif layer_type=='pool':
            net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')
        network[name]=net
    return network

由于计算风格特征和内容特征时数据都不会改变,所以为了节省训练时间,在训练之前先计算出特征结果(该函数封装在以下代码get_neck()函数中)。

总的代码如下:



    import tensorflow as tf
    import numpy as np
    import scipy.io
    import cv2
    import scipy.misc
    
    HEIGHT = 300
    WIGHT = 450
    LEARNING_RATE = 1.0
    NOISE = 0.5
    ALPHA = 1
    BETA = 500
    
    TRAIN_STEPS = 200
    
    OUTPUT_IMAGE = "D://python//img"
    STYLE_LAUERS = [('conv1_1', 0.2), ('conv2_1', 0.2), ('conv3_1', 0.2), ('conv4_1', 0.2), ('conv5_1', 0.2)]
    CONTENT_LAYERS = [('conv4_2', 0.5), ('conv5_2',0.5)]


    def vgg19():
        layers=(
            'conv1_1','relu1_1','conv1_2','relu1_2','pool1',
            'conv2_1','relu2_1','conv2_2','relu2_2','pool2',
            'conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3',
            'conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4',
            'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5'
        )
        vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')
        weights = vgg['layers'][0]
    
        network={}
        net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)
        network['input'] = net
        for i,name in enumerate(layers):
            layer_type=name[:4]
            if layer_type=='conv':
                kernels = weights[i][0][0][0][0][0]
                bias = weights[i][0][0][0][0][1]
                conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)
                net=tf.nn.relu(conv + bias)
            elif layer_type=='pool':
                net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')
            network[name]=net
        return network


    # 求gamm矩阵
    def gram(x, size, deep):
        x = tf.reshape(x, (size, deep))
        g = tf.matmul(tf.transpose(x), x)
        return g


    def style_loss(sess, style_neck, model):
        style_loss = 0.0
        for layer_name, weight in STYLE_LAUERS:
            # 计算特征矩阵
            a = style_neck[layer_name]
            x = model[layer_name]
            # 长x宽
            M = a.shape[1] * a.shape[2]
            N = a.shape[3]
    
            # 计算gram矩阵
            A = gram(a, M, N)
            G = gram(x, M, N)
    
            # 根据公式计算损失,并进行累加
            style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight
            # 将损失对层数取平均
        style_loss /= len(STYLE_LAUERS)
        return style_loss


    def content_loss(sess, content_neck, model):
        content_loss = 0.0
        # 逐个取出衡量内容损失的vgg层名称及对应权重
    
        for layer_name, weight in CONTENT_LAYERS:
            # 计算特征矩阵
            p = content_neck[layer_name]
            x = model[layer_name]
            # 长x宽xchannel
    
            M = p.shape[1] * p.shape[2]
            N = p.shape[3]
    
            lss = 1.0 / (M * N)
            content_loss += lss * tf.reduce_sum(tf.pow(p - x, 2)) * weight
            # 根据公式计算损失,并进行累加
    
        # 将损失对层数取平均
        content_loss /= len(CONTENT_LAYERS)
        return content_loss


    def random_img(height, weight, content_img):
        noise_image = np.random.uniform(-20, 20, [1, height, weight, 3])
        random_img = noise_image * NOISE + content_img * (1 - NOISE)
        return random_img

   

    def get_neck(sess, model, content_img, style_img):
        sess.run(tf.assign(model['input'], content_img))
        content_neck = {}
        for layer_name, weight in CONTENT_LAYERS:
            # 计算特征矩阵
            p = sess.run(model[layer_name])
            content_neck[layer_name] = p
        sess.run(tf.assign(model['input'], style_img))
        style_content = {}
        for layer_name, weight in STYLE_LAUERS:
            # 计算特征矩阵
            a = sess.run(model[layer_name])
            style_content[layer_name] = a
        return content_neck, style_content


    def main():
        model = vgg19()
        content_img = cv2.imread('D://a//content1.jpg')
        content_img = cv2.resize(content_img, (450, 300))
        content_img = np.reshape(content_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]
        style_img = cv2.imread('D://a//style1.jpg')
        style_img = cv2.resize(style_img, (450, 300))
        style_img = np.reshape(style_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]
    
        # 生成图片
        rand_img = random_img(HEIGHT, WIGHT, content_img)
    
        with tf.Session() as sess:
            # 计算loss值
            content_neck, style_neck = get_neck(sess, model, content_img, style_img)
            cost = ALPHA * content_loss(sess, content_neck, model) + BETA * style_loss(sess, style_neck, model)
            optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)
    
            sess.run(tf.global_variables_initializer())
            sess.run(tf.assign(model['input'], rand_img))
            for step in range(TRAIN_STEPS):
                print(step)
                # 训练
                sess.run(optimizer)
    
                if step % 10 == 0:
                    img = sess.run(model['input'])
                    img += [128, 128, 128]
                    img = np.clip(img, 0, 255).astype(np.uint8)
                    name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"
                    img = img[0]
                    cv2.imwrite(name, img)
    
            img = sess.run(model['input'])
            img += [128, 128, 128]
            img = np.clip(img, 0, 255).astype(np.uint8)
            cv2.imwrite("D://end.jpg", img[0])
    
    main()



7 效果展示

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/68806.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

viewerjs 如何新增下载图片功能(npm包补丁)

文章目录 先实现正常的效果实现下载图片改变viewerjs的build函数源码改变之后,执行npm i 之后node_modules源码又变回了原样 1、viwerjs所有功能都很完善,但唯独缺少了图片的下载 2、需求:在用viwerjs旋转图片后,可以直接下载旋转…

【类和对象】收尾总结

目录 一、初始化列表 1.格式要求 (1) 初始化列表初始化 ①括号中是初始值 ②括号中是表达式 (2) 初始化列表和函数体混用 2.特点 ①初始化时先走初始化列表,再走函数体 ②拷贝构造函数属于特殊的构造函数,函数内也可以使用初始化列表进行初始化 …

【c语言】指针进阶(超详细)

文章目录 ✈ 指向函数指针数组的指针📌指向函数指针数组的指针的定义📌指向函数指针数组的数组指针的使用 ✈回调函数📌 回调函数的定义📌 回调函数的使用 ✈qsort函数📌 qsort函数的作用📌qsort函数的定义…

Rikka with Square Numbers 2023“钉耙编程”中国大学生算法设计超级联赛(8)hdu7370

Problem - 7370 题目大意&#xff1a;给出两个数a&#xff0c;b&#xff0c;每次操作可以使其中一个数加上或减去一个任意的完全平方数&#xff0c;问要使a&#xff0c;b相等需要的最少操作次数是多少 1<a,b<1e9,a!b 思路&#xff1a;我们可以将问题转化为将a和b的差w…

最强的表格组件—AG Grid使用以及License Key Crack

PS: 想要官方 License Key翻到最后面 Ag Grid简介 Ag-Grid 是一个高级数据网格&#xff0c;适用于JavaScript/TypeScript应用程序&#xff0c;可以使用React、Angular和Vue等流行框架进行集成。它是一种功能强大、灵活且具有高度可定制性的表格解决方案&#xff0c;提供了丰富…

UNIX基础知识:UNIX体系结构、登录、文件和目录、输入和输出、程序和进程、出错处理、用户标识、信号、时间值、系统调用和库函数

引言&#xff1a; 所有的操作系统都为运行在其上的程序提供服务&#xff0c;比如&#xff1a;执行新程序、打开文件、读写文件、分配存储区、获得系统当前时间等等 1. UNIX体系结构 从严格意义上来说&#xff0c;操作系统可被定义为一种软件&#xff0c;它控制计算机硬件资源&…

博客项目(Spring Boot)

1.需求分析 注册功能&#xff08;添加用户操纵&#xff09;登录功能&#xff08;查询操作)我的文章列表页&#xff08;查询我的文章|文章修改|文章详情|文章删除&#xff09;博客编辑页&#xff08;添加文章操作&#xff09;所有人博客列表&#xff08;带分页功能&#xff09;…

Games101学习笔记2

参考博客&#xff1a;GAMES101 梳理 / 个人向图形学笔记_games101笔记_river_of_sebajun的博客-CSDN博客 lecture 05 Rasterization 1(Triangles) 光栅化 把东西画在屏幕上的过程就是光栅化的过程 视口变换 为什么模型用三角形&#xff1f; 最基本的几何平面&#xff1b;保…

matplotlib fig.legend()常用参数 包括位置调整和字体设置等

一、四种方法 legend() legend(handles, labels) legend(handleshandles) legend(labels)1 legend() labels自动通过绘图获取&#xff08;Automatic detection of elements to be shown in the legend&#xff09; # 第一种方法 ax.plot([1, 2, 3], labelInline label) ax.l…

JVM、JRE、JDK三者之间的关系

JVM、JRE和JDK是与Java开发和运行相关的三个重要概念。 再了解三者之前让我们先来了解下java源文件的执行顺序&#xff1a; 使用编辑器或IDE(集成开发环境)编写Java源文件.即demo.java程序必须编译为字节码文件&#xff0c;javac(Java编译器)编译源文件为demo.class文件.类文…

力扣:59. 螺旋矩阵 II(Python3)

题目&#xff1a; 给你一个正整数 n &#xff0c;生成一个包含 1 到 n2 所有元素&#xff0c;且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全…

日期切换

组件&#xff1a;<template><div class"time-picker"><el-radio-group size"small" v-model"timeType" change"changePickerType"><el-radio-button label"hour" v-if"isShow">时</el…

Open_PN笔记

>>>仅用作学习用途 1.准备好需要用到的工具 官网下载地址&#xff1a; openvpn 客户端下载地址&#xff1a; https://swupdate.openvpn.org/community/releases/openvpn-install-2.4.5-I601.exe EasyRSA下载地址&#xff1a; https://githu…

Koan自动重装和Cobbler_web

Koan是Cobbler的辅助工具&#xff0c;可以实现很多功能&#xff0c;使用koan配合Cobbler可以实现快速重装Linux系统&#xff1a; 1、安装koan&#xff1a; yum install -y epel-releaseyum install -y koan 安装截图&#xff1a; 2、在客户机上&#xff0c;用koan选择要重装的…

可以重复烧写的语音ic有哪些特征和优势

目录 一、简介可擦写的语音芯片&#xff0c;其实就是MCUflash的架构&#xff0c;无其他说法&#xff0c;就这一种说法。这个就是它最大的特征尤其是SOP8的封装类型的芯片&#xff0c;是区别于OTP类型的另一个品类&#xff0c;基本上OTP的语音芯片适用的场景。他都可以满足和替代…

文件系统目录结构

1. 目录结构 linux的文件系统是采用级层式的树状目录结构&#xff0c;在此结构中的最上层是根目录/ &#xff0c;然后在此目录下再创建其他的目录。 在linux中&#xff0c;一切皆文件(Linux将所有的设备、文件、进程等都当做文件来处理) 2. 目录作用具体介绍 目录名解析/b…

js玩儿爬虫

前言 提到爬虫可能大多都会想到python&#xff0c;其实爬虫的实现并不限制任何语言。 下面我们就使用js来实现&#xff0c;后端为express&#xff0c;前端为vue3。 实现功能 话不多说&#xff0c;先看结果&#xff1a; 这是项目链接&#xff1a;https://gitee.com/xi1213/w…

【云原生】kubernetes中容器的资源限制

目录 1 metrics-server 2 指定内存请求和限制 3 指定 CPU 请求和限制 资源限制 在k8s中对于容器资源限制主要分为以下两类: 内存资源限制: 内存请求&#xff08;request&#xff09;和内存限制&#xff08;limit&#xff09;分配给一个容器。 我们保障容器拥有它请求数量的…

【Spring专题】Spring之Bean的生命周期源码解析——阶段一(扫描生成BeanDefinition)

目录 前言阅读指引阅读建议 课程内容一、生成BeanDefinition1.1 简单回顾1.2 概念回顾1.3 核心方法讲解 二、方法讲解2.1 ClassPathBeanDefinitionScanner#scan2.2 ClassPathBeanDefinitionScanner#doScan2.3 ClassPathScanningCandidateComponentProvider#findCandidateCompon…

SpringBoot 整合JDBC

SpringData简介 Sping Data 官网&#xff1a;https://spring.io/projects/spring-data数据库相关的启动器 &#xff1a;可以参考官方文档&#xff1a;https://docs.spring.io/spring-boot/docs/2.6.5/reference/htmlsingle/#using-boot-starter 整合JDBC 创建测试项目测试数据…