机器学习笔记之优化算法(十一)凸函数铺垫:梯度与方向导数

机器学习笔记之优化算法——凸函数铺垫:梯度与方向导数

引言

本节作为介绍凸函数的铺垫,简单介绍方向导数与梯度

回顾:偏导数

二元函数 f ( x , y ) f(x,y) f(x,y)为例,其关于变量的偏导数表示:三维空间中,曲面上某一点沿着 x x x轴方向或 y y y轴方向变化的速率。也就是说:
梯度下降法——铺垫中解释过,下图中描述斜率的红色切线不是方向;真正描述方向的是红色箭头。

  • ∂ f ( x , y ) ∂ x = f x ( x , y ) \begin{aligned}\frac{\partial f(x,y)}{\partial x} = f_x(x,y)\end{aligned} xf(x,y)=fx(x,y)表示函数 f ( x , y ) f(x,y) f(x,y)沿着 x x x轴方向的斜率
    下图中 P \mathcal P P沿着 x x x轴方向的红色直线所描述的斜率
  • 同理, ∂ f ( x , y ) ∂ y = f y ( x , y ) \begin{aligned}\frac{\partial f(x,y)}{\partial y} = f_y(x,y)\end{aligned} yf(x,y)=fy(x,y)表示函数 f ( x , y ) f(x,y) f(x,y)沿着 y y y轴方向的斜率。
    下图中 P \mathcal P P沿着 y y y轴方向的红色直线所描述的斜率
    偏导数图像示例

f ( x , y ) f(x,y) f(x,y)在点 P ( x 0 , y 0 ) \mathcal P(x_0,y_0) P(x0,y0)关于 x , y x,y x,y的偏导数分别表示如下:
第一个公式即: y = y 0 y=y_0 y=y0不变,观察变量 x x x的斜率; x x x同理。
{ f x ( x 0 , y 0 ) = lim ⁡ Δ x ⇒ 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x f y ( x 0 , y 0 ) = lim ⁡ Δ y ⇒ 0 f ( x 0 , y + Δ y ) − f ( x 0 , y 0 ) Δ y \begin{cases} \begin{aligned} & f_x(x_0,y_0) = \mathop{\lim}\limits_{\Delta x \Rightarrow 0} \frac{f(x_0 + \Delta x,y_0) - f(x_0,y_0)}{\Delta x} \\ & f_y(x_0,y_0) = \mathop{\lim}\limits_{\Delta y \Rightarrow 0} \frac{f(x_0,y+\Delta y) - f(x_0,y_0)}{\Delta y} \end{aligned} \end{cases} fx(x0,y0)=Δx0limΔxf(x0+Δx,y0)f(x0,y0)fy(x0,y0)=Δy0limΔyf(x0,y+Δy)f(x0,y0)
观察上图中的 P \mathcal P P点,它仅仅在 x , y x,y x,y两个方向(红色箭头)上有导数吗 ? ? ?并不是,在其他方向同样可以存在导数。由此,引出方向导数 ( Directional Derivative ) (\text{Directional Derivative}) (Directional Derivative)的概念。
例如下图中 P \mathcal P P点,其导数方向可以有很多。例如黄色箭头描述的方向。
其他方向-方向导数示例

方向余弦

关于某向量 l ⃗ \vec l l 在坐标系中表示如下:
向量l在坐标系中的表示
在坐标系中记作 l ⃗ = ( a , b ) \vec l =(a,b) l =(a,b);如果要将 l ⃗ \vec l l 单位化,得到单位向量 l ⃗ o \vec l^{o} l o,则执行:
l ⃗ o = 1 a 2 + b 2 ( a , b ) = ( a a 2 + b 2 , b a 2 + b 2 ) \begin{aligned} \vec l^{o} & = \frac{1}{\sqrt{a^2 + b^2}} (a,b) \\ & = \left(\frac{a}{\sqrt{a^2 + b^2}},\frac{b}{\sqrt{a^2 + b^2}}\right) \end{aligned} l o=a2+b2 1(a,b)=(a2+b2 a,a2+b2 b)
观察上图,可以将 a a 2 + b 2 = cos ⁡ α , b a 2 + b 2 = sin ⁡ α = cos ⁡ β \begin{aligned}\frac{a}{\sqrt{a^2 + b^2}} = \cos \alpha,\frac{b}{\sqrt{a^2 + b^2}} = \sin \alpha = \cos \beta\end{aligned} a2+b2 a=cosα,a2+b2 b=sinα=cosβ,最终 l ⃗ o \vec l^{o} l o可表示为: ( cos ⁡ α , cos ⁡ β ) (\cos \alpha,\cos \beta) (cosα,cosβ)
也就是说,单位向量可以表示成这种方向余弦的形式。

方向导数

方向导数的几何意义

依然以上述图形示例:可能存在各种各样(黄色箭头)的方向,这里以黄色直线箭头为例,该方向的在函数图像中的投影会呈现一条轨迹(黄色实线):
实际上这条轨迹就是 P \mathcal P P点,在该方向朝向的、与坐标平面 X O Y \mathcal X\mathcal O\mathcal Y XOY垂直的平面把 f ( x , y ) f(x,y) f(x,y)截断产生的图像
方向与投影
去掉其他多余的箭头,过 P ( x 0 , y 0 ) \mathcal P(x_0,y_0) P(x0,y0)对应的函数结果位置做一条切线,而切线的斜率即函数在 P \mathcal P P点处的斜率(黑色直线):
其中黄色菱形表示截断平面中间由实线与虚线组成的类似梯形的区域表示截面,只不过虚线部分的轨迹并不是当前方向对应的轨迹,不是我们我们关注的对象。
P在某方向上的切线斜率
由此可见: P \mathcal P P点的 36 0 o 360^o 360o方向上,每一个方向都存在一个截面,随着方向的变化,对应的函数结果 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)在截面上的位置得到不同的切线(斜率)结果
准确来说是截线而不是截面,因为函数 f ( ⋅ ) f(\cdot) f()空心

方向导数的定义

如何定义方向导数 ? ? ?见下图:
方向导数的定义

上述图像描述 X O Y \mathcal X\mathcal O\mathcal Y XOY平面上, P ( x 0 , y 0 ) \mathcal P(x_0,y_0) P(x0,y0)点沿着 l ⃗ \vec l l 方向前进了一个极小的长度 t t t并到达 A \mathcal A A点,对应 P \mathcal P P在函数上的映射结果 z 0 = f ( x 0 , y 0 ) z_0= f(x_0,y_0) z0=f(x0,y0)也会沿着对应的轨迹移动一个距离,并达到新的位置 z 0 ′ z_0' z0;假设 Δ Z = ∣ z 0 − z 0 ′ ∣ \Delta \mathcal Z = |z_0 - z_0'| ΔZ=z0z0,对应的方向导数可表示为:
lim ⁡ t ⇒ 0 Δ Z t \mathop{\lim}\limits_{t \Rightarrow 0} \frac{\Delta \mathcal Z}{t} t0limtΔZ
已知 P \mathcal P P点坐标是 ( x 0 , y 0 ) (x_0,y_0) (x0,y0),并且已知距离 t t t以及对应的 α , β \alpha,\beta α,β夹角,因而可以得到 A \mathcal A A的坐标: A ( x 0 + t ⋅ cos ⁡ α , y 0 + t ⋅ cos ⁡ β ) \mathcal A (x_0 + t \cdot \cos \alpha,y_0 + t \cdot \cos \beta) A(x0+tcosα,y0+tcosβ)。最终可以将 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处关于向量 l ⃗ \vec l l 的方向导数 ∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) \begin{aligned}\frac{\partial \mathcal Z}{\partial {\vec l}}|_{(x_0,y_0)}\end{aligned} l Z(x0,y0)表达为如下形式:
∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) = lim ⁡ t ⇒ 0 f ( x 0 + t ⋅ cos ⁡ α , y 0 + t ⋅ cos ⁡ β ) − f ( x 0 , y 0 ) t \frac{\partial \mathcal Z}{\partial {\vec l}}|_{(x_0,y_0)} = \mathop{\lim}\limits_{t \Rightarrow 0} \frac{f(x_0 + t \cdot \cos \alpha,y_0 + t \cdot \cos \beta) - f(x_0,y_0)}{t} l Z(x0,y0)=t0limtf(x0+tcosα,y0+tcosβ)f(x0,y0)

基于方向导数重新观察偏导数,可以发现:方向导数就是偏导数的一种特例。以 ∂ f ( x , y ) ∂ x \begin{aligned}\frac{\partial f(x,y)}{\partial x}\end{aligned} xf(x,y)为例。它等价于: l ⃗ \vec l l 的方向是 x x x轴的正方向
偏导数与方向导数
此时: α = 0 , β = π 2 ⇒ cos ⁡ α = 1 , cos ⁡ β = 0 \begin{aligned}\alpha = 0,\beta = \frac{\pi}{2} \Rightarrow \cos \alpha = 1,\cos \beta = 0\end{aligned} α=0,β=2πcosα=1,cosβ=0从而有:
此时的方向导数退化成了偏导数, ∂ f ( x , y ) ∂ y \begin{aligned}\frac{\partial f(x,y)}{\partial y}\end{aligned} yf(x,y)同理,这里不再赘述。
∂ Z ∂ l ⃗ = lim ⁡ t ⇒ 0 f ( x 0 + t , y 0 ) − f ( x 0 , y 0 ) t = f x ( x 0 , y 0 ) = ∂ f ( x , y ) ∂ x ∣ ( x 0 , y 0 ) \begin{aligned} \frac{\partial \mathcal Z}{\partial \vec l} = \mathop{\lim}\limits_{t \Rightarrow 0} \frac{f(x_0 + t,y_0) - f(x_0,y_0)}{t} = f_x(x_0,y_0) = \frac{\partial f(x,y)}{\partial x}|_{(x_0,y_0)} \end{aligned} l Z=t0limtf(x0+t,y0)f(x0,y0)=fx(x0,y0)=xf(x,y)(x0,y0)

方向导数与偏导数之间的关联关系

在函数 f ( ⋅ ) f(\cdot) f()在其定义域内可微的条件下,该函数在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处关于方向向量 l ⃗ \vec l l 方向导数 ∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) \begin{aligned}\frac{\partial \mathcal Z}{\partial {\vec l}}|_{(x_0,y_0)}\end{aligned} l Z(x0,y0)与该函数在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的偏导数 f x ( x 0 , y 0 ) , f y ( x 0 , y 0 ) f_x(x_0,y_0),f_y(x_0,y_0) fx(x0,y0),fy(x0,y0)之间的关联关系表示如下:
∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) = f x ( x 0 , y 0 ) ⋅ cos ⁡ α + f y ( x 0 , y 0 ) ⋅ cos ⁡ β \begin{aligned}\frac{\partial \mathcal Z}{\partial {\vec l}}|_{(x_0,y_0)} = f_x(x_0,y_0) \cdot \cos \alpha + f_y(x_0,y_0) \cdot \cos \beta\end{aligned} l Z(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ

证明过程

  • 在函数 f ( ⋅ ) f(\cdot) f()可微的条件下,在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)点关于 Z \mathcal Z Z的变化量 Δ Z \Delta \mathcal Z ΔZ可表示为:
    其中 O [ ( Δ x ) 2 + ( Δ y ) 2 ] \mathcal O\left[\sqrt{({\Delta x})^2 + (\Delta y)^2}\right] O[(Δx)2+(Δy)2 ]表示关于 ( Δ x ) 2 + ( Δ y ) 2 \sqrt{({\Delta x})^2 + (\Delta y)^2} (Δx)2+(Δy)2 的高阶无穷小。
    Δ Z = f x ( x 0 , y 0 ) ⋅ Δ x + f y ( x 0 , y 0 ) ⋅ Δ y + O [ ( Δ x ) 2 + ( Δ y ) 2 ] \Delta \mathcal Z = f_x(x_0,y_0) \cdot \Delta x + f_y(x_0,y_0) \cdot \Delta y + \mathcal O\left[\sqrt{({\Delta x})^2 + (\Delta y)^2}\right] ΔZ=fx(x0,y0)Δx+fy(x0,y0)Δy+O[(Δx)2+(Δy)2 ]
  • 由于全微分在任意方向上均成立。
    全微分方程
    因而有:
    { Δ x = t ⋅ cos ⁡ α Δ y = t ⋅ cos ⁡ β ( Δ x ) 2 + ( Δ y ) 2 = t 2 ⋅ ( cos ⁡ 2 α + cos ⁡ 2 β ) = t 2 α + β = π 2 \begin{cases} \begin{aligned} & \Delta x = t \cdot \cos \alpha \\ & \Delta y = t \cdot \cos \beta \\ & (\Delta x)^2 + (\Delta y)^2 = t^2 \cdot (\cos^2 \alpha + \cos^2 \beta) = t^2 \quad \alpha +\beta = \frac{\pi}{2} \end{aligned} \end{cases} Δx=tcosαΔy=tcosβ(Δx)2+(Δy)2=t2(cos2α+cos2β)=t2α+β=2π
  • 观察等式左侧:
    Δ Z \Delta \mathcal Z ΔZ表示 P ( x 0 , y 0 ) \mathcal P(x_0,y_0) P(x0,y0)沿着 l ⃗ \vec l l 移动 t t t到达 A \mathcal A A点前后函数结果的变化量。
    I left = Δ Z = f ( x 0 + t ⋅ cos ⁡ α , y 0 + t ⋅ cos ⁡ β ) − f ( x 0 , y 0 ) \mathcal I_{\text{left}} = \Delta \mathcal Z = f(x_0 + t \cdot \cos \alpha,y_0 + t \cdot \cos \beta) - f(x_0,y_0) Ileft=ΔZ=f(x0+tcosα,y0+tcosβ)f(x0,y0)
    观察等式右侧:
    将上述公式代入。
    I right = f x ( x 0 , y 0 ) ⋅ t ⋅ cos ⁡ α + f y ( x 0 , y 0 ) ⋅ t ⋅ cos ⁡ β + O ( t ) \mathcal I_{\text{right}} = f_x(x_0,y_0) \cdot t \cdot \cos \alpha + f_y(x_0,y_0) \cdot t \cdot \cos \beta + \mathcal O(t) Iright=fx(x0,y0)tcosα+fy(x0,y0)tcosβ+O(t)
  • I left , I right \mathcal I_{\text{left}},\mathcal I_{\text{right}} Ileft,Iright同时除以 t t t,等式两端依然相等:
    并令 I left \mathcal I_{\text{left}} Ileft t ⇒ 0 t \Rightarrow 0 t0,因为 I Right \mathcal I_{\text{Right}} IRight中不含 t ( O ( t ) t = 0 ) t \left(\begin{aligned}\frac{\mathcal O(t)}{t} = 0\end{aligned} \right) t(tO(t)=0),因此不产生影响。
    { I right t = f x ( x 0 , y 0 ) ⋅ cos ⁡ α ⋅ t + f y ( x 0 , y 0 ) ⋅ cos ⁡ β ⋅ t + O ( t ) t = f x ( x 0 , y 0 ) ⋅ cos ⁡ α + f y ( x 0 , y 0 ) ⋅ cos ⁡ β lim ⁡ t ⇒ 0 I l e f t t = lim ⁡ t ⇒ 0 f ( x 0 + t ⋅ cos ⁡ α , y 0 + t ⋅ cos ⁡ β ) − f ( x 0 , y 0 ) t = ∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) \begin{cases} \begin{aligned} \frac{\mathcal I_{\text{right}}}{t} & = \frac{f_x(x_0,y_0) \cdot \cos \alpha \cdot t + f_y(x_0,y_0) \cdot \cos \beta \cdot t + \mathcal O(t)}{t} \\ & = f_x(x_0,y_0) \cdot \cos \alpha + f_y(x_0,y_0) \cdot \cos \beta \\ \mathop{\lim}\limits_{t \Rightarrow 0} \frac{\mathcal I_{left}}{t} & = \mathop{\lim}\limits_{t \Rightarrow 0} \frac{f(x_0 + t \cdot \cos \alpha,y_0 + t \cdot \cos \beta) - f(x_0,y_0)}{t} \\ & = \frac{\partial \mathcal Z}{\partial \vec l}|_{(x_0,y_0)} \end{aligned} \end{cases} tIrightt0limtIleft=tfx(x0,y0)cosαt+fy(x0,y0)cosβt+O(t)=fx(x0,y0)cosα+fy(x0,y0)cosβ=t0limtf(x0+tcosα,y0+tcosβ)f(x0,y0)=l Z(x0,y0)
  • 最终有:
    ∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) = f x ( x 0 , y 0 ) ⋅ cos ⁡ α + f y ( x 0 , y 0 ) ⋅ cos ⁡ β \frac{\partial \mathcal Z}{\partial \vec l}|_{(x_0,y_0)} = f_x(x_0,y_0) \cdot \cos \alpha + f_y(x_0,y_0) \cdot \cos \beta l Z(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ
    证毕。

梯度 ( Gradient ) (\text{Gradient}) (Gradient)

关于梯度,它的返回结果是一个向量形式。关于函数 f ( x , y ) f(x,y) f(x,y),其梯度向量通常记作: grad  f ( x , y ) \text{grad } f(x,y) grad f(x,y)或者 ∇ f ( x , y ) \nabla f(x,y) f(x,y)
其具体表示为:
∇ f ( x , y ) = [ f x ( x , y ) , f y ( x , y ) ] \nabla f(x,y) = \left[f_x(x,y),f_y(x,y)\right] f(x,y)=[fx(x,y),fy(x,y)]
很明显:梯度向量中的元素就是 f ( x , y ) f(x,y) f(x,y)针对不同自变量 x , y x,y x,y的偏导数。因此它的计算并不麻烦,如何理解梯度向量 ? ? ?具体从方向大小两个角度对梯度向量进行认知。

回顾上面的方向导数 ∂ Z ∂ l ⃗ \begin{aligned}\frac{\partial \mathcal Z}{\partial \vec l}\end{aligned} l Z,它可以表示成如下形式:

  • 两向量之间的内积形式。
  • l ⃗ o \vec l^{o} l o l ⃗ \vec l l 的单位向量结果。
    ∂ Z ∂ l ⃗ = f x ( x , y ) ⋅ cos ⁡ α + f y ( x , y ) ⋅ cos ⁡ β = [ f x ( x , y ) , f y ( x , y ) ] ( cos ⁡ α cos ⁡ β ) = ∇ f ( x , y ) ⋅ l ⃗ o \begin{aligned} \frac{\partial \mathcal Z}{\partial \vec l} & = f_x(x,y) \cdot \cos \alpha + f_y(x,y) \cdot \cos \beta \\ & = \left[f_x(x,y),f_y(x,y)\right] \begin{pmatrix} \cos \alpha \\ \cos \beta \end{pmatrix} \\ & = \nabla f(x,y) \cdot \vec l^{o} \end{aligned} l Z=fx(x,y)cosα+fy(x,y)cosβ=[fx(x,y),fy(x,y)](cosαcosβ)=f(x,y)l o

首先,由于 x , y x,y x,y轴描述的方向是确定的,因而在某点 ( x , y ) (x,y) (x,y)处的梯度向量也同样是固定;但 l ⃗ o \vec l^{o} l o却不固定。由于是内积结果,我们可以将其展开:
∂ Z ∂ l ⃗ = ∇ f ( x , y ) ⋅ l ⃗ o = ∣ ∣ ∇ f ( x , y ) ∣ ∣ ⋅ ∣ ∣ l ⃗ o ∣ ∣ ⋅ cos ⁡ θ \begin{aligned}\frac{\partial \mathcal Z}{\partial \vec l} & = \nabla f(x,y) \cdot \vec l^{o} \\ & = ||\nabla f(x,y)|| \cdot ||\vec l^{o}|| \cdot \cos \theta \end{aligned} l Z=f(x,y)l o=∣∣∇f(x,y)∣∣∣∣l o∣∣cosθ
观察:由于 ∣ ∣ ∇ f ( x , y ) ∣ ∣ = [ f x ( x , y ) ] 2 + [ f y ( x , y ) ] 2 ||\nabla f(x,y)|| = [f_x(x,y)]^2 + [f_y(x,y)]^2 ∣∣∇f(x,y)∣∣=[fx(x,y)]2+[fy(x,y)]2,因而在函数 f ( ⋅ ) f(\cdot) f()某一点 ( x , y ) (x,y) (x,y)确定的条件下,其值也是固定的;并且 ∣ ∣ l ⃗ o ∣ ∣ = 1 ||\vec l^{o}|| = 1 ∣∣l o∣∣=1。因此:影响 ∂ Z ∂ l ⃗ \begin{aligned}\frac{\partial \mathcal Z}{\partial \vec l}\end{aligned} l Z大小的因素只有向量 ∇ f ( x , y ) \nabla f(x,y) f(x,y)与向量 l ⃗ o \vec l^{o} l o之间的夹角 cos ⁡ θ \cos \theta cosθ

由于 cos ⁡ θ ∈ [ − 1 , 1 ] \cos \theta \in [-1,1] cosθ[1,1],因此 θ = 0 \theta = 0 θ=0时,也就是 l ⃗ o \vec l^{o} l o ∇ f ( x , y ) \nabla f(x,y) f(x,y)方向重合时,方向导数取得最大值,最大值即:
∂ Z ∂ l ⃗ = ∣ ∣ ∇ f ( x , y ) ∣ ∣ \frac{\partial \mathcal Z}{\partial \vec l} = ||\nabla f(x,y)|| l Z=∣∣∇f(x,y)∣∣
也就是说:当前点 ( x , y ) (x,y) (x,y),选择梯度方向时,它的斜率(变化量)最大

相关参考:
【多元微分专题】第六期:方向导数和梯度的直观理解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/68730.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【华秋推荐】新能源汽车中的T-BOX系统,你了解多少?

近几年,新能源汽车产业进入了加速发展的阶段。我国的新能源汽车产业,经过多年的持续努力,技术水平显著提升、产业体系日趋完善、企业竞争力大幅增强,呈现市场规模、发展质量“双提升”的良好局面。同时,通过国家多年来…

IDEA每次启动indexing解决办法

每次启动indexing很浪费时间。 解决办法 setting中搜索index 设置如下: 这样设置以后,启动速度明显快多了。 参考 https://blog.csdn.net/qq_45162113/article/details/121128721

Leetcode24 两两交换链表相邻的节点

迭代解法: class Solution {public ListNode swapPairs(ListNode head) {ListNode dummyHead new ListNode(0);dummyHead.next head;ListNode temp dummyHead;while (temp.next ! null && temp.next.next ! null) {ListNode node1 temp.next;ListNode n…

【单片机】51单片机,晨启科技,板子引脚对应关系

一般引脚: sbit beepP2^4; //将单片机的P2.4端口定义为beep.本口用于屏蔽上电后蜂鸣器响 sbit ledP1^0; //将单片机的P1.0端口定义为led,用于点亮LED-D1 sbit DIG1P0^0; //数码管位选1 sbit DIG2P0^1; //数码管位选2P10xFF;//初始化P1引脚全部置高&a…

树莓派安装Ubuntu系统(无屏幕)

树莓派安装ubuntu系统 前言 软件需要: 1.方案一 win32diskimager-1.0.0-install.exe SDFormatterha Ubuntu镜像(可以官网下载也可以清华源) 方案二: 树莓派镜像烧录器 树莓派镜像烧录器直达下载 硬件需要: 64GB内存卡(推荐Sanddisk Ultra&am…

Java并发编程第4讲——Java中的锁(知识扫盲)

目录 一、锁的相关概念 1.1 什么是锁 1.2 为什么需要锁 1.3 Java中锁的分类 二、synchronized关键字 2.1 三个特点 2.2 三种表现形式(🙋‍♂️) 2.3 sychronized是怎么实现的(🙋‍♂️) 2.4 JDK1.…

用MariaDB创建数据库,SQL练习,MarialDB安装和使用

前言:MariaDB数据库管理系统是MySQL的一个分支,主要由开源社区在维护,采用GPL授权许可 MariaDB的目的是完全兼容MySQL,包括API和命令行,使之能轻松成为MySQL的代替品。在存储引擎方面,使用XtraDB来代替MySQ…

有血有肉的PPT

1、PPT是Powerpoint缩写 2、引申的含义是Powerpoint Power(力量/能量) Point(观点/要点) 3、用PPT做的文档是讲演稿,讲演的内容要有力度,之所以要去演讲是为了能够影响受众 4、其次演讲稿上的内容要列出要点、表明观点,所以一般P…

Jmeter入门之digest函数 jmeter字符串连接与登录串加密应用

登录请求中加密串是由多个子串连接,再加密之后传输。 参数连接:${var1}${var2}${var3} 加密函数:__digest (函数助手里如果没有该函数,请下载最新版本的jmeter5.0) 函数助手:Options > …

2.CUDA 编程手册中文版---编程模型

2.编程模型 更多精彩内容,请扫描下方二维码或者访问https://developer.nvidia.com/zh-cn/developer-program 来加入NVIDIA开发者计划 本章通过概述CUDA编程模型是如何在c中公开的,来介绍CUDA的主要概念。 编程接口中给出了对 CUDA C 的广泛描述。 本章…

在Ubuntu中使用Docker启动MySQL8的天坑

写在前面 简介: lower_case_table_names 是mysql设置大小写是否敏感的一个参数。 1.参数说明: lower_case_table_names0 表名存储为给定的大小和比较是区分大小写的 lower_case_table_names 1 表名存储在磁盘是小写的,但是比较的时候是不区…

微服务Eureka注册中心

目录 一、Eureka的结构和作用 二、搭建eureka-server 三、服务注册 四、服务发现 假如我们的服务提供者user-service部署了多个实例,如图: 存在的问题: order-service在发起远程调用的时候,该如何得知user-service实例的ip地址…

使用自己的数据集预加载 Elasticsearch

作者:David Pilato 我最近在讨论论坛上收到一个问题,关于如何修改官方 Docker 镜像以提供一个现成的 Elasticsearch 集群,其中已经包含一些数据。 说实话,我不喜欢这个想法,因为你必须通过提 entrypoint.sh 的分叉版本…

管理类联考——逻辑——论证逻辑——汇总篇——真题和典例——解释

解释 1. 解释现象 199-2016-1-42——解释现象——并列现象——在二者之间建立联系 某公司办公室茶水间提供自助式收费饮料。职员拿完饮料后,自己把钱放到特设的收款箱中。研究者为了判断职员在无人监督时,其自律水平会受哪些因素的影响,特…

vscode的ros拓展(插件)无法渲染urdf

文章目录 事件背景资料调查解决方案 事件背景 之前在vscode中一直用得好好的urdf预览功能,突然在某一天,不行了。 执行 URDF Preview之后,虽然弹出了一个URDF Preview的窗口,但是这个窗口里面啥都没有。没有网格、没有模型。 一开…

低成本无刷高速吹风机单片机方案

高速吹风机的转速一般是普通吹风机的5倍左右。一般来说,吹风机的电机转速一般为2-3万转/分钟,而高速吹风机的电机转速一般为10万转/分钟左右。高转速增加了高风速。一般来说,吹风机的风力只有12-17米/秒,而高速吹风机的风力可以达…

uniapp 使用canvas画海报(微信小程序)

效果展示&#xff1a; 项目要求&#xff1a;点击分享绘制海报&#xff0c;并实现分享到好友&#xff0c;朋友圈&#xff0c;并保存 先实现绘制海报 <view class"data_item" v-for"(item,index) in dataList" :key"index"click"goDet…

CSDN到底要多少积分才有排名(图解)

2016年8月16日的截图&#xff1a; 2016年8月17日的截图&#xff1a; CSDN的排名是完全按照积分排的&#xff0c;只隔了22分而已&#xff0c;千里之外和2万名的差别就是卡在这个地方。 2016年10月18日的截图&#xff1a; 这是刚刚进入前7000名&#xff0c;刚好访问也是刚刚突破4…

持有PMP证书,可申请CSPM证书!

一&#xff0c;CSPM介绍 CSPM的全称是&#xff1a;项目管理专业人员能力评价&#xff0c;是我们国内的“PMP”&#xff0c;是我们中国人自己的项目管理专业人士评价指南&#xff0c;符合中国国情且符合中国未来发展的项目管理专业人员能力评价标准。 2022年10月12日发布实施了…

Word转PDF工具哪家安全?推荐好用的文件格式转换工具

Word文档是我们最常见也是最常用的办公软件&#xff0c;想必大家都知道了Word操作起来十分的简单&#xff0c;而且功能也是比较齐全的。随着科技的不断进步&#xff0c;如今也是有越来越多类型的办公文档&#xff0c;PDF就是其中之一&#xff0c;那么word转pdf怎么转?Word转PD…