基于Python爬虫+词云图+情感分析对某东上完美日记的用户评论分析

 

🤵‍♂️ 个人主页:@艾派森的个人主页

✍🏻作者简介:Python学习者
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+


目录

前言

一、研究背景

二、技术原理 

三、获取数据

四、词云图分析

五、情感分析

六、往期推荐


前言

        最近参加了腾讯云Cloud Studio的作品评选,本次实验的爬虫代码点击链接查看,https://club.cloudstudio.net/a/12010256262184960,对大家有帮助的话欢迎大家点个赞和Fork!十分感谢!

一、研究背景

        随着互联网和社交媒体的发展,用户评论成为了消费者表达自己意见和情感的主要途径之一。对于企业来说,深入了解用户对其产品或服务的看法可以帮助他们更好地了解市场需求、产品改进的方向,以及消费者的情感倾向。因此,对用户评论进行分析已经成为了市场研究和商业决策的重要手段之一。

        完美日记作为一家知名的化妆品品牌,其在社交媒体和电商平台上拥有大量的用户评论。通过对完美日记的用户评论进行分析,可以揭示出以下几个方面的信息:

  1. 消费者满意度: 通过情感分析,可以了解消费者对完美日记产品的满意度。情感分析可以判断评论中的情感倾向,如正面、负面或中性,从而判断消费者对产品的态度。

  2. 产品特点: 用户评论中可能提到产品的不同特点、功能和效果。通过词云图,可以直观地了解哪些特点被频繁提及,从而了解产品的优势和劣势。

  3. 市场趋势: 对用户评论进行分析可以发现市场的趋势和消费者的需求。例如,如果多数评论中提到某种产品特点,说明这个特点可能是当前市场上消费者关注的焦点。

  4. 品牌声誉: 用户评论不仅关注产品,还可能涉及到品牌的声誉、客服服务等方面。通过分析评论中对品牌的评价,可以了解品牌在消费者心目中的形象。

  5. 竞争分析: 通过比较完美日记与竞争对手的用户评论,可以了解不同品牌的优势和劣势,为市场竞争和战略制定提供依据。

        因此,基于Python爬虫获取完美日记用户评论,结合词云图和情感分析技术,可以深入挖掘用户的情感、意见和需求,为完美日记品牌的市场营销、产品改进以及品牌管理提供有价值的信息支持。这种综合分析方法有助于企业更好地了解市场动态,优化产品策略,提升品牌价值。

二、技术原理 

  1. Python爬虫: 爬虫是一种自动化工具,用于从网页上获取数据。通过Python编写爬虫脚本,可以模拟人类浏览器行为,访问目标网站,抓取用户评论数据。常用的Python爬虫库包括Requests和Beautiful Soup,它们可以帮助获取网页内容并解析HTML结构。

  2. 词云图生成: 词云图是一种图形化展示文本数据中关键词频率的方式。制作词云图需要对文本进行预处理,包括分词、去除停用词(如“的”、“是”等常见词语)、统计词频等。然后,根据词频将关键词按照大小不同进行排列,生成词云图。Python中的词云库如WordCloud可以帮助生成词云图。

  3. 情感分析: 情感分析是一种自然语言处理技术,用于判断文本中表达的情感倾向,如积极、消极或中性。情感分析可以通过机器学习模型,如基于深度学习的模型或传统的文本分类算法,来训练并判断文本情感。这些模型会根据文本的词汇、语法结构以及上下文来判断情感。

        在本次实验中,爬虫技术用于获取完美日记的用户评论数据,词云图技术用于可视化评论中的关键词频率,情感分析技术用于判断评论的情感倾向。结合这些技术,可以从大量的评论数据中提取出有关产品、品牌和消费者情感的有价值信息。

本次实验技术工具

Python版本:3.9

代码编辑器:jupyter notebook

三、获取数据

本次实验的目标是获取某东上关于完美日记的用户评论数据,打开京东官网,来到完美日记官方旗舰店

打开商品评论并使用开发者工具进行抓包分析,找到返回用户评论的接口并确定关键参数,最后使用requests库进行模拟请求,将返回的数据进行解析提取即可。 

分析过程其实不难,学过爬虫的话都知道,完整的代码及使用教程都在文章开头的链接里

代码运行之后,只需要输入你要爬取的商品ID和要爬取的页数即可

商品ID就是商品详情页网址最后的那串数字

四、词云图分析

首先读取我们刚爬取的完美日记评论数据

import pandas as pd
with open('JD_comment_100055983355.txt')as f:
    comment_list = []
    for comment in f.readlines():
        comment = comment.replace('\n','')
        comment_list.append(comment)
    df = pd.DataFrame(data=comment_list,columns=['comment'])
df

 接着自定义我们的画词云图函数

import jieba
import collections
import re
import stylecloud
from PIL import Image


def draw_WorldCloud(df,pic_name,color='white'):
    data =  ''.join([item for item in df])
    # 文本预处理 :去除一些无用的字符只提取出中文出来
    new_data = re.findall('[\u4e00-\u9fa5]+', data, re.S)
    new_data = "".join(new_data)
    # 文本分词
    seg_list_exact = jieba.cut(new_data)
    result_list = []
    with open('停用词库.txt', encoding='utf-8') as f: #可根据需要打开停用词库,然后加上不想显示的词语
        con = f.readlines()
        stop_words = set()
        for i in con:
            i = i.replace("\n", "")   # 去掉读取每一行数据的\n
            stop_words.add(i)

    for word in seg_list_exact:
        if word not in stop_words and len(word) > 1:
            result_list.append(word)
    word_counts = collections.Counter(result_list)

    # 词频统计:获取前100最高频的词
    word_counts_top = word_counts.most_common(100)
    print(word_counts_top)

    # 绘制词云图
    stylecloud.gen_stylecloud(text=' '.join(result_list), # 提取500个词进行绘图
                            collocations=False, # 是否包括两个单词的搭配(二字组)
                            font_path=r'C:\Windows\Fonts\msyh.ttc', #设置字体,参考位置为  C:\Windows\Fonts\ ,根据里面的字体编号来设置
                            size=800, # stylecloud 的大小
                            palette='cartocolors.qualitative.Bold_7', # 调色板,调色网址: https://jiffyclub.github.io/palettable/
                            background_color=color, # 背景颜色
                            icon_name='fas fa-cloud', # 形状的图标名称 蒙版网址:https://fontawesome.com/icons?d=gallery&p=2&c=chat,shopping,travel&m=free
                            gradient='horizontal', # 梯度方向
                            max_words=2000, # stylecloud 可包含的最大单词数
                            max_font_size=150, # stylecloud 中的最大字号
                            stopwords=True, # 布尔值,用于筛除常见禁用词
                            output_name=f'{pic_name}.png') # 输出图片
    # 打开图片展示
    img=Image.open(f'{pic_name}.png')
    img.show()

调用函数作图

draw_WorldCloud(df['comment'],'完美日记用户评论词云图')
[('喜欢', 146), ('颜色', 140), ('产品', 112), ('效果', 98), ('不错', 91), ('包装', 91), ('口红', 88), ('好看', 76), ('质感', 75), ('适合', 64), ('女朋友', 58), ('滋润', 52), ('持久', 48), ('完美', 47), ('特别', 45), ('肤色', 45), ('精致', 44), ('朋友', 42), ('礼物', 40), ('礼盒', 38), ('感觉', 37), ('日记', 36), ('满意', 32), ('物流', 30), ('值得', 28), ('超级', 26), ('送给', 26), ('京东', 26), ('特色', 26), ('质量', 25), ('购买', 22), ('快递', 20), ('速度', 20), ('推荐', 20), ('买来', 19), ('很快', 19), ('收到', 18), ('上档次', 16), ('高级', 16), ('色号', 16), ('盒子', 16), ('眼影', 15), ('高端', 15), ('性价比', 15), ('购物', 15), ('老婆', 14), ('颜值', 14), ('精美', 14), ('看着', 13), ('很漂亮', 13), ('送人', 13), ('日常', 13), ('搭配', 13), ('打开', 13), ('情人节', 13), ('整体', 12), ('价格', 12), ('设计', 11), ('希望', 11), ('质地', 11), ('合适', 11), ('下次', 11), ('卖家', 11), ('看起来', 11), ('活动', 10), ('挺不错', 10), ('客服', 10), ('大气', 10), ('漂亮', 10), ('外观', 10), ('高大', 10), ('生日礼物', 9), ('红色', 9), ('实惠', 9), ('很棒', 9), ('还会', 9), ('细腻', 9), ('掉色', 9), ('服务态度', 9), ('品牌', 9), ('发货', 9), ('宝贝', 9), ('体验', 9), ('做工', 9), ('拿到', 9), ('三种', 9), ('第二天', 8), ('信赖', 8), ('媳妇', 8), ('划算', 8), ('显白', 8), ('三个', 8), ('小巧', 8), ('节日', 8), ('来说', 8), ('一支', 8), ('粉色', 7), ('好评', 7), ('犹豫', 7), ('简直', 7)]

 从词云图可以发现,完美日记是一款口红产品,在颜色、包装、效果上有着不错的口碑,且这款产品多为送女朋友的礼物。

五、情感分析

         情感分析我们使用到是SnowNLP模块,SnowNLP是一个用于中文文本情感分析的Python库,它可以帮助你判断中文文本的情感倾向,即判断文本是积极的、消极的还是中性的。得到的分数表示文本的情感倾向,越接近1表示积极情感,越接近0表示消极情感。

代码如下:

#加载情感分析模块
from snownlp import SnowNLP
import matplotlib.pyplot as plt

# 遍历每条评论进行预测
values=[SnowNLP(i).sentiments for i in df['comment']]
#输出积极的概率,大于0.5积极的,小于0.5消极的
#myval保存预测值
myval=[]
good=0
mid=0
bad=0
for i in values:
    if (i>=0.6):
        myval.append("积极")
        good=good+1
    elif 0.2<i<0.6:
        myval.append("中性")
        mid+=1
    else:
        myval.append("消极")
        bad=bad+1
df['预测值']=values
df['评价类别']=myval
df.head()

 接着做出情感分析的可视化图

rate=good/(good+bad+mid)
print('好评率','%.f%%' % (rate * 100)) #格式化为百分比
#作图
y=values
plt.rc('font', family='SimHei', size=10)
plt.plot(y, marker='o', mec='r', mfc='w',label=u'评价分值')
plt.xlabel('用户')
plt.ylabel('评价分值')
# 让图例生效
plt.legend()
#添加标题
plt.title('评论情感分析',family='SimHei',size=14,color='blue')
plt.show()

         从图中可以看出绝大多数的评论情感得分都是在1附近,但是我们不知道消极、中性、积极评论的占比,于是我们做出饼图进行展示分析:

y = df['评价类别'].value_counts().values.tolist()
plt.pie(y,
        labels=['积极','中性','消极'], # 设置饼图标签
        colors=["#d5695d", "#5d8ca8", "#65a479"], # 设置饼图颜色
        autopct='%.2f%%', # 格式化输出百分比
       )
plt.show()

可以看出积极评论占比95%,消极评论仅占2%,可见该款产品的口碑非常不错!

六、往期推荐

基于爬虫+词云图+Kmeans聚类+LDA主题分析+社会网络语义分析对大唐不夜城用户评论进行分析

基于Tomotopy构建LDA主题模型(附案例实战) 

用Python爬取电影数据并可视化分析 

基于TF-IDF+KMeans聚类算法构建中文文本分类模型(附案例实战) 

文本分析-使用jieba库进行中文分词和去除停用词(附案例实战) 

基于sklearn实现LDA主题模型(附实战案例) 

数据分析案例-文本挖掘与中文文本的统计分析 

数据分析实例-获取某宝评论数据做词云图可视化 

数据分析案例-对某宝用户评论做情感分析 

文本分析-使用jieba库实现TF-IDF算法提取关键词 

ROSTEA软件下载及情感分析详细操作教程(附网盘链接) 

SnowNLP使用自定义语料进行模型训练(情感分析) 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/68661.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据结构——红黑树基础(博文笔记)

数据结构在查找这一章里介绍过这些数据结构&#xff1a;BST&#xff0c;AVL&#xff0c;RBT&#xff0c;B和B。 除去RBT&#xff0c;其他的数据结构之前的学过&#xff0c;都是在BST的基础上进行微小的限制。 1.比如AVL是要求任意节点的左右子树深度之差绝对值不大于1,由此引出…

教程分享:如何制作一个旅游路线二维码?

吃一成不变的早餐&#xff0c;九点出门还会遇见楼下遛狗的大爷&#xff0c;老板掐着表发起了会议邀请&#xff0c;窗外还是那几棵树&#xff0c;天空依旧灰蒙蒙的&#xff0c;羊了个羊第二关还是过不去&#xff0c;理发店的小哥又倚在门口抽烟…… 大多时候&#xff0c;我们的…

Kafka 01——Kafka的安装及简单入门使用

Kafka 01——Kafka的安装及简单入门使用 1. 下载安装1.1 JDK的安装1.2 Zookeeper的安装1.2.1 关于Zookeeper版本的选择1.2.2 下载、安装Zookeeper 1.3 kafka的安装1.3.1 下载1.3.2 解压1.3.3 修改配置文件 2. 启动 kafka2.1 Kafka启动2.2 启动 kafka 遇到的问题2.2.1 问题12.2.…

数学建模—分类模型

本讲将介绍分类模型。对于而分类模型&#xff0c;我们将介绍逻辑回归&#xff08;logistic regression&#xff09;和Fisher线性判别分析两种分类算法&#xff1b;对于多分类模型&#xff0c;我们将简单介绍Spss中的多分类线性判别分析和多分类逻辑回归的操作步骤下。 本题按水…

vue3多页面配置你一定会遇到的问题,踩坑指南

vue3实现多页面打包容易&#xff0c;关键是如何实现本地的开发和调试&#xff1f;我们接下来解决如下几个问题&#xff1a; 1 多页面项目的项目结构是怎样的&#xff1f; --public--src---App.vue---main.js---page1. ---App.vue---main.js----home.vue----list.vue---page2.…

HttpRunner搭建接口自动化测试项目

前言&#xff1a;前面写过一篇PytestAllure接口自动化测试框架搭建的博客&#xff0c;这篇博客学习另外一款优秀的开源的接口自动化测试框架&#xff1a;HttpRunner&#xff0c;本博客主要学习如何搭建基于HttpRunner的接口自动化测试项目 PytestAllure接口自动化测试框架搭建…

编写一个指令(v-focus2end)使输入框文本在聚焦时焦点在文本最后一个位置

项目反馈输入框内容比较多时候&#xff0c;让鼠标光标在最后一个位置&#xff0c;心想什么奇葩需求&#xff0c;后面试了一下&#xff0c;是有点影响体验&#xff0c;于是就有了下面的效果&#xff0c;我目前的项目都是若依的架子&#xff0c;用的是vue2版本。vue3的朋友想要使…

“智农”数字孪生一体化管控平台

数字乡村可视化|数字乡村|农业可视化|高标准农田|数字农业大脑|大棚可视化|数字农业|数字乡村|数字农业研学|数字大棚|智慧大棚|农业数字孪生|智慧农业|数字农业温室|智农|智慧农业可视化|智能温室|智慧温室|农业大数据|农业产业园可视化|植物工厂|可视化农业监控系统|设施农业…

判断时间段是否重叠

1、逻辑公式 时间段1&#xff1a;start1&#xff08;开始时间&#xff09;&#xff0c;end1&#xff08;结束时间&#xff09; 时间段2&#xff1a;start2&#xff08;开始时间&#xff09;&#xff0c;end2&#xff08;结束时间&#xff09; 重叠条件为&#xff1a;start1 <…

I 2C 接口控制器理论讲解

IIC系列文章&#xff1a; (1) I 2C 接口控制器理论讲解 (2) I2C接口控制设计与实现 文章目录 一、 IIC协议二、IIC协议解析1.特点2.规定3.器件地址4.存储地址 三、IIC写时序1.单字节写时序2.连续写时序&#xff08;页写时序&#xff09; 四、IIC读时序1.单字节读时序2.连续读时…

鸿蒙边缘计算网关正式开售

IDO-IPC3528鸿蒙边缘计算网关基于RK3568研发设计&#xff0c;采用22nm先进工艺制程&#xff0c;四核A55 CPU&#xff0c;主频高达2.0GHz&#xff0c;支持高达8GB高速LPDDR4&#xff0c;1T算力NPU&#xff0c;4K H.265/H264硬解码&#xff1b;视频输出接口HDMI2.0&#xff0c;双…

62.不同路径

一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。 问总共有多少条不同的路径&#xff1f; 动态规…

竞赛项目 深度学习手势识别算法实现 - opencv python

文章目录 1 前言2 项目背景3 任务描述4 环境搭配5 项目实现5.1 准备数据5.2 构建网络5.3 开始训练5.4 模型评估 6 识别效果7 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习手势识别算法实现 - opencv python 该项目较为新颖…

.netcore grpc客户端流方法详解

一、客户端流式处理概述 客户端流式处理方法在该方法没有接收消息的情况下启动。 requestStream 参数用于从客户端读取消息。 返回响应消息时&#xff0c;客户端流式处理调用完成。客户端可以发送多个消息流到服务端&#xff0c;当所有客户端消息流发送结束&#xff0c;调用请…

APP备案明明是好事,为啥有些人反对呢?

我是卢松松&#xff0c;点点上面的头像&#xff0c;欢迎关注我哦&#xff01; APP和小程序备案&#xff0c; 这事在网上闹的沸沸扬扬&#xff0c;明明是好事&#xff0c;可为啥那么多人反对呢?而且最近出现了好多阴阳怪气的声音。 话说从2005年3月起&#xff0c;国内所有的网…

AI抢饭碗!多部由Midjourney+Runway,制作的电影火了!丨IDCF

ChatGPT等生成式AI正在重塑各个行业的工作模式&#xff0c;尤其是影视领域。最近&#xff0c;多部由MidjourneyRunway生成式AI制作的电影预告片在社交平台上火了。 一部名叫的《芭本海默》的电影从对白、场景、人物、切镜完全由生成式AI制作完成并受到了用户的好评。该片结合了…

IDEA简单拷贝一份新项目记录

IDEA简单拷贝项目记录 拷贝后改项目名&#xff0c;然后iml 配置文件改项目名&#xff0c;然后 .idea 中的compiler.xml 里面的name标签改项目名。 就可以了

3D Web轻量化引擎HOOPS Communicator如何实现对BIM桌面端的支持?

HOOPS Communicator是一款简单而强大的工业级高性能3D Web轻量化渲染开发包&#xff0c;其主要应用于Web领域&#xff0c;主要加载其专有的SCS、SC、SCZ格式文件&#xff1b;HOOPS还拥有另一个桌面端开发包HOOPS Visualize&#xff0c;主要加载HSF、HMF轻量化格式文件。两者虽然…

PyTorch深度学习实战(10)——过拟合及其解决方法

PyTorch深度学习实战&#xff08;10&#xff09;——过拟合及其解决方法 0. 前言1. 过拟合基本概念2. 添加 Dropout 解决过拟合3. 使用正则化解决过拟合3.1 L1 正则化3.2 L2 正则化 4. 学习率衰减小结系列链接 0. 前言 过拟合 (Overfitting) 是指在机器学习中&#xff0c;模型…

putty使用记录

在官网下载并安装putty 一、SSH 二、FTP open 192.168.1.118 put -r C:\Users\Administrator\Desktop\test /opt/lanren312/test # 上传&#xff08;文件夹&#xff09; get -r /opt/lanren312/test C:\Users\Administrator\Desktop\test2 # 下载&#xff08;文件夹&#xff…