本来想先写LangChain系列的,但是最近被
AutoGen
、LlamaIndex
给吸引了。2023就要过去了,TIOBE数据编程语言排名Python都第一了,可见今年AI开发之热。好吧,一边学习业界通用的LangChain框架,一边准备跨年吧。
前言
先是OpenAI引爆AI狂热,再是Llama2、通义千问、文心一言百家齐放,最近Google Gemini一出来就是梭哈。LLM已逐步被传统应用整合,升级为AI应用。其中,LangChain这个AI框架功不可没。因为,针对如OpenAI的API调用太底层,也不够通用,还有些跟业务相结合的中间层,这些LangChain帮我们打理好了。
LangChain适合的业务
- RAG 应用
LangChain
与LlamaIndex
握手,快速开发检索增强知识库类应用。
- 聊天机器人
反手给自己的应用添加一个AI客服。
- 代理
即Agent, 辅助大模型完成特定任wy
OPENAI 等大模型
OPENAI最近变慢了,变笨了,但是目前,确实没太好的替代产品啊。
LangChain简化和统一了在应用中集成和利用大语言模型能力的过程。除了OpenAI外,LangChain还可以很方便的集成在Hugging Face上的各种模型。
运行第一个LangChain应用
本系列代码都会跑在google的colab云端,它用于运行一些nlp任务非常方便,省去了本地安装一大堆环境,建议学习的时候先用它。colab
我们这里使用的大模型是OpenAI,你需要一个api-key。
- 安装LangChain和OpenAI
ini复制代码!pip install langchain==0.0.316
!pip install openai==0.28.1
这里使用的langchain是0.0.235版本,openai==0.28.1版本。请你在运行本教程代码时也使用这个版本。
- hello langchain
python复制代码from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
import os
os.environ['OPENAI_API_KEY'] = '您的有效OpenAI API Key'
chat = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
response = chat([ HumanMessage(content="Hello Langchain!") ])
print(response)
Langchain
提供了聊天模型模块,有了chat_models,做聊天so easy!我们从chat_models里导入ChatOpenAI。temperature参数为自由度,值的范围在0-1之间,值越小,LLM的返回就越严谨,越大就越随意。如果你是要OpenAI给你写首诗,这个值 越大越好。如果你是要OpenAI告诉你法条中某事怎么个理,这个值接近0最好,不然,它便是法外狂徒。第二个参数我们指定了模型的名字,在这里,我们使用的是gpt-3.5-turbo,如果你非常有马内,也可以用gpt-4.0。
我们引入了os 系统模块,并将api_key 存入到OPENAI_API_KEY这个系统变量中。默认情况下,Langchain会从环境变量 OPENAI_API_KEY
中读取API Key。注意,在代码中直接嵌入API Key明文并不安全,切勿将API Key直接提交到代码仓库。我们建议利用.env文件和python-dotenv包来管理API Key
from langchain.schema import HumanMessage
提供了role
为user
的聊天内容对象封装。如果您刚入门不久,建议先去刷下吴恩达老师的OpenAI 课程。我们在聊天时,内容是由content和role组成的。role分为system、user、assistant三种。在langchain的schema里提供了user这种角色的消息对象,简化了我们聊天的代码。
如果看到了下面这样的反馈,我们完成了LangChain的第一个聊天程序。
总结
- 我们入门LangChain,了解其与OpenAI的关系,它对我们在业务中使用LLM提供了统一的封装。
参考资料
- www.bilibili.com/video/BV12N…
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。