python数据文件处理库-pandas

内容目录

    • 一、pandas介绍
    • 二、数据加载和写出
    • 三、数据清洗
    • 四、数据转换
    • 五、数据查询和筛选
    • 六、数据统计
    • 七、数据可视化

pandas 是一个 Python提供的快速、灵活的数据结构处理包,让“关系型”或“标记型”数据的交互既简单又直观。

官网地址: https://pandas.pydata.org/

一、pandas介绍

pandas 有两个主要数据结构Series(一维)和 DataFrame(二维), 可以处理多种类型的数据.
主要功能:

  1. 处理缺失数据(以 NaN 表示),无论是浮点数还是非浮点数数据 大小可变性:可以向 DataFrame 和更高维度的对象插入和删除列
  2. 自动和显式数据对齐:对象可以显式地对齐到一组标签,或者用户可以简单地忽略标签,让 Series、DataFrame
  3. 等自动在计算中对齐数据 按组操作功能: 用于对数据集执行分割-应用-合并操作,既可用于聚合数据,也可用于转换数据 多源数据转换: 将其他
  4. Python 和 NumPy 数据结构中的不规则、不同索引的数据转换为 DataFrame 对象
  5. 智能的基于标签的切片、花式索引和大数据集的子集划分 直观的数据集合并和连接 灵活的数据集重塑和旋转
  6. 轴的分层标记(每个刻度可以有多个标签) 强大的 IO 工具,用于从(CSV 和分隔符)加载数据,从 Excel
  7. 文件、数据库加载数据,以及保存/加载超快速 HDF5 格式的数据 时间序列的功能:日期范围生成和频率转换,移动窗口统计,日期偏移和滞后。

Pandas结构:
在这里插入图片描述

import pandas as pd

df = pd.DataFrame(
    {
        "Name": [
            "Braund, Mr. Owen Harris",
            "Allen, Mr. William Henry",
            "Bonnell, Miss. Elizabeth",
        ],
        "Age": [22, 35, 58],
        "Sex": ["male", "male", "female"],
    }
)

print(df)

#                        Name  Age     Sex
# 0   Braund, Mr. Owen Harris   22    male
# 1  Allen, Mr. William Henry   35    male
# 2  Bonnell, Miss. Elizabeth   58  female

其中DataFrame的每一列都是Series对象
在这里插入图片描述
在这里插入图片描述

print(type(df['Name']))
# <class 'pandas.core.series.Series'>

二、数据加载和写出

pandas支持多种形式的数据格式, 不仅可以在代码中显示的加载列表、数组等, 还可以引入外部文件, 支持的外部文件格式也较多

在这里插入图片描述

加载时调用对应的方法==read_xxx()==
在这里插入图片描述

# 数据加载
df = pd.read_excel('./static/pd_file.xlsx')

写出时调用对应的方法to_xxx()
在这里插入图片描述

df = pd.to_excel('./static/pd_file_new.xlsx')

三、数据清洗

  • dropna(axis=0, how=‘any’): 删除含有缺失值的行或列。
data = {'A': [1, 2, np.nan], 'B': [5, np.nan, np.nan], 'C': [1, 2, 3]}
df = pd.DataFrame(data)

# 删除含有缺失值的行
df_cleaned = df.dropna(axis=0, how='any')
print(df_cleaned)
  • fillna(value=None, method=‘ffill’, …): 用指定值或方法填充缺失值。
# 使用前一个有效值填充缺失值
df_filled = df.fillna(method='ffill')
print(df_filled)
drop(labels, axis=0): 删除指定行或列。
# 删除第一行
df_dropped_row = df.drop(0, axis=0)
print(df_dropped_row)

# 删除某列,例如 'B' 列
df_dropped_col = df.drop('B', axis=1)
print(df_dropped_col)
  • replace(to_replace=value, value=None): 替换指定值。
# 将缺失值替换为0
df_replaced = df.replace(np.nan, 0)
print(df_replaced)
  • rename(columns={old_name: new_name}, index={…}): 重命名列名或索引。
df_renamed = df.rename(columns={'A': 'NewA', 'B': 'NewB', 'C': 'NewC'})
print(df_renamed)

四、数据转换

  • 生成列
# 对a列按照'|'分割, 取1、9、10列作为新列
df[['city','poi_1', 'poi_2']] = df['a'].str.split('|', expand=True)[[0,8,9]]
  • 删除列
# 删除a列
df = df.drop(columns=['a'])
  • 转换列格式
# 修改dt类型为datetime格式
df['dt'] = pd.to_datetime(df['dt'])
# 处理日期为day、month、year
df['dt_day'] = df['dt'].dt.strftime('%Y-%m-%d')
df['dt_month'] = df['dt'].dt.strftime('%Y-%m')
df['dt_year'] = df['dt'].dt.year
  • pivot(index, columns, values): 数据透视表操作。
# 示例数据
data = {
    'Category': ['Fruit', 'Fruit', 'Vegetable', 'Fruit', 'Vegetable'],
    'Product': ['Apple', 'Banana', 'Carrot', 'Orange', 'Potato'],
    'Sales': [100, 200, 150, 300, 250]
}

df = pd.DataFrame(data)

# 使用pivot创建数据透视表,以'Category'为行,'Product'为列,'Sales'为值
pivot_table = df.pivot(index='Category', columns='Product', values='Sales')
print(pivot_table)
  • pivot_table(index, values, aggfunc=np.mean, …): 创建带有聚合函数的数据透视表。
data = {
    'City': ['New York', 'New York', 'San Francisco', 'San Francisco', 'Chicago', 'Chicago'],
    'Month': ['Jan', 'Feb', 'Jan', 'Feb', 'Jan', 'Feb'],
    'Temperature': [5, 8, 12, 14, 3, 6]
}

df = pd.DataFrame(data)

# 使用pivot_table计算每个月各城市的平均温度
pivot_table = df.pivot_table(index='Month', columns='City', values='Temperature', aggfunc=np.mean)
print(pivot_table)
  • apply(func, axis=0): 应用函数到DataFrame的行或列上。
# 示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})

# 定义一个计算平方的函数
def square(x):
    return x**2

# 对DataFrame的每一列应用square函数
squared_df = df.apply(square, axis=0)
print(squared_df)
  • groupby(by=None): 根据某一列或多列进行分组。
data = {
    'Category': ['Fruit', 'Fruit', 'Vegetable', 'Fruit', 'Vegetable'],
    'Sales': [100, 200, 150, 300, 250]
}

df = pd.DataFrame(data)

# 按'Category'列进行分组,并计算'Sales'的总和
grouped_sales = df.groupby('Category')['Sales'].sum()
print(grouped_sales)

五、数据查询和筛选

  • loc()方法
    DataFrame和Series对象的一种索引器,允许基于行和列的标签来选择数据。
    语法: df.loc[row_selection, column_selection],其中row_selection和column_selection可以是单个标签、列表、切片或布尔数组,
    • 特性:
      • 支持“前闭后闭”的区间选择,意味着如果用切片指定范围,两端 的标签都会被包含在内。
      • 可以用来选取单行、单列、多行、多列或行与列的组合。
      • 不仅可以用于选择数据,还可以用于修改现有数据或插入新数据。
import pandas as pd

data = {
    'Country': ['China', 'United States', 'India'],
    'Population': [1404200000, 332639102, 1393409038],
    'Area (sq km)': [9600000, 9372610, 3287263]
}
df = pd.DataFrame(data)
df.set_index('Country', inplace=True)

选取单列

population = df.loc[:, 'Population']

选取多列

subset = df.loc[:, ['Population', 'Area (sq km)']]

选取特定行

china_data = df.loc['China']

选取行范围

us_to_india = df.loc['United States':'India']

布尔索引

large_countries = df.loc[df['Population'] > 1000000000]

修改数据

df.loc['China', 'Population'] = 1444200000  # 更新中国人口数据

插入新数据

df.loc['Brazil'] = ['Brazil', 213993437, 8511965]  # 新增巴西数据
  • iloc()方法
    DataFrame和Series对象的另一个重要索引器,它提供了基于整数位置的数据选择和修改功能。与loc基于标签索引不同,iloc完全依赖于数据在结构中的物理位置
    语法:df.iloc[row_selection, column_selection],其中row_selection和column_selection可以是整数、整数列表、切片或布尔数组,来指定数据的位置
    • 特性:
      • 支持整数索引的“左闭右开”区间选择,意味着切片操作的结束位置是不包含在内的。
      • 适合于快速按位置访问或修改数据,尤其是在处理没有明确标签或者标签不如位置重要时。
      • 不能直接使用列名或行标签进行索引,只能使用整数位置。

选取单个元素

element = df.iloc[1, 2]  # 选取第二行第三列的元素

选取整行或整列

second_row = df.iloc[1, :]  # 选取第二行
third_column = df.iloc[:, 2]  # 选取第三列

选取多行多列

subset = df.iloc[0:2, 1:3]  # 选取前两行的第二列至第三列

切片选择

last_two_rows = df.iloc[-2:]  # 选取最后两行的所有列

布尔索引(结合.iloc需先转换为位置)

bool_index = df['A'] > 1
position_based_bool_index = df.index[bool_index]
rows_with_A_gt_1 = df.iloc[position_based_bool_index]
  • loc()和iloc()的区别

    • loc是通过标签来访问数据,而iloc是通过整数位置来访问数据
    • 在使用loc时,选择的行和列都是闭区间,即包括开始和结束位置;而在使用iloc时,选择的行和列都是左闭右开区间,即包括开始位置但不包括结束位置。
    • loc可以使用布尔数组进行筛选,而iloc不支持。
    • loc可以使用标签名和标签列表作为索引,而iloc只能使用整数作为索引。
    • loc和iloc都支持使用冒号(:)来选择所有行或列,但是在使用loc时,冒号前后必须加上标签名或标签列表;而在使用iloc时,冒号前后可以省略,表示选择所有行或列。
  • 使用案例

# 数据查询
# 查询某列
city = df['city']

# 按索引
# 查询第二列的所有行, 其中第一个为行, 第二个为列
name = df.iloc[:,1]

# 获取某些列
c1 = df[['city','poi_1']]
c2 = df.iloc[:,1:3]

查询切片

# 按索引
# 查询第二列的所有行, 其中第一个为行, 第二个为列
name = df.iloc[:,1]

查询指定列
数据查询

# 数据查询
city = df['city']
# 按索引
name = df.iloc[:,1]
# 获取某些列
c1 = df[['city','poi_1']]
c2 = df.iloc[:,1:3]
print(name.head(5))
print(c2.head(5))
数据筛选
# 索引筛选
# 筛选前二十行数据
print(df.iloc[0:21, :])
# 或者
print(df.head(20))

# 按条件筛选
# 获取广州的记录
df.set_index('city', inplace=True)
print(df.loc['广州'])

# 获取第二列='广州市正骨医院'的记录
print(df.loc[df['poi_1'] == '广州市正骨医院', :])

六、数据统计

  • sum(), mean(), median(), min(), max(): 计算总和、均值、中位数、最小值、最大值。
# 示例数据
data = {'A': [1, 2, 3, 4, 5],
        'B': [5, 15, 10, 20, np.nan],
        'C': [7, 8, 9, 10, 11]}

df = pd.DataFrame(data)

# 计算'B'列的总和、均值、中位数、最小值、最大值
total_B = df['B'].sum()
mean_B = df['B'].mean()
median_B = df['B'].median()
min_B = df['B'].min()
max_B = df['B'].max()

print(f"Sum of B: {total_B}")
print(f"Mean of B: {mean_B}")
print(f"Median of B: {median_B}")
print(f"Min of B: {min_B}")
print(f"Max of B: {max_B}")
  • count(): 非NA值的数量。
# 计算每列的非空值数量
non_na_counts = df.count()
print(non_na_counts)
  • corr(): 计算相关系数矩阵。
# 计算相关系数矩阵
correlation_matrix = df.corr()
print(correlation_matrix)
  • cov(): 计算协方差矩阵。
# 计算协方差矩阵
covariance_matrix = df.cov()
print(covariance_matrix)
  • sort_values(by, ascending=True): 根据一列或多列的值排序。
# 按'A'列升序排序
sorted_df = df.sort_values(by='A', ascending=True)
print(sorted_df)
  • rank(method=‘average’): 计算每行或每列的排名。
# 计算'B'列的排名
ranked_df = df['B'].rank(method='average')
print(ranked_df)

七、数据可视化

使用Matplotlib的基本绘图
首先确保已经安装了matplotlib库,如果没有安装可以通过pip安装:pip install matplotlib。

import pandas as pd
import matplotlib.pyplot as plt

# 示例数据
data = {'Year': [2000, 2001, 2002, 2003, 2004],
        'Sales': [10, 15, 20, 25, 30]}
df = pd.DataFrame(data)

# 绘制折线图
plt.figure(figsize=(10, 5))
df.plot(kind='line', x='Year', y='Sales', color='blue')
plt.title('Sales Over Years')
plt.xlabel('Year')
plt.ylabel('Sales')
plt.show()

在这里插入图片描述
总之, pandas的功能十分丰富且强大, 这里只是列举了冰山一角, 更多内容可以查看官网.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/685728.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Polar Web 【简单】- 被黑掉的站

Polar Web 【简单】- 被黑掉的站 Contents Polar Web 【简单】- 被黑掉的站思路EXP运行&总结 思路 如题目所述&#xff0c;这是一个被黑掉的站点&#xff0c;由此不禁要了解该黑客发现了哪些可以入手的路径&#xff0c;或是留下了什么样的文件供持续访问。 目录扫描该站点发…

AI和机器人引领新一轮农业革命

AI和机器人技术在农业领域的应用正在迅速发展&#xff0c;未来它们可能会实现厘米级精度的自主耕作。 精确种植&#xff1a;AI算法可以分析土壤条件、气候数据和作物生长周期&#xff0c;以决定最佳种植地点和时间。 土壤管理&#xff1a;利用传感器和机器学习&#xff0c;机器…

Windows安装运行elasticsearch服务

官方下载地址&#xff1a;Download Elasticsearch | Elastic 我在linux上执行的下载命令&#xff1a;wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-8.5.3-linux-x86_64.tar.gz Elasticsearch&#xff08;简称ES&#xff09;是一款基于Apache Lu…

JVM学习-Arthas

Arthas Alibaba开源的Java诊断工具&#xff0c;在线排查问题&#xff0c;无需重启&#xff0c;动态跟踪Java代码&#xff0c;实时监控JVM状态Arthas支持JDK6&#xff0c;支持Linux/Mac/Windows&#xff0c;采用命令行交互模式&#xff0c;同时提供丰富的Tab自动补全功能&#…

前端传参数后端变量类型能够接受到List却无法接收到值

问题描述 今天写了个接口&#xff0c;下图所示 ReqVO里是这样的&#xff1a; 然后前端去请求&#xff0c;从请求结果中看发现这里值是在的&#xff08;有经验的可能就看出来了otherInfo.id: 这样以参数后端是接收不到的&#xff0c;但是当时没发现&#xff09; 传进来后端…

【cmake】cmake cache

cmake cache是什么 cmake cache是cmake在配置好后生成的一个CMakeCache.txt的文件&#xff0c;里面存储了一堆变量&#xff0c;这些变量一般都是关于项目的配置和环境的。 比如你用的什么编译器&#xff0c;编译器选项&#xff0c;还有项目目录。 例如&#xff08;在cmakelist…

uniAPP @input时报错

<input :maxlength"8" v-model"item.value" placeholder"请输入金额" input"inputFn" /> 这些些时会报以下错误 定位了好久之后发现input不支持 v-model和input一起使用 改成以下这般就正常啦 <input :maxlength"8&q…

【Cityengine】Cityengine生产带纹理的建筑模型导入UE4/UE5(下)

【Cityengine】Cityengine生产带纹理的建筑模型导入UE4/UE5&#xff08;下&#xff09; 一、导出数据&#xff08;2022中文版案例&#xff09;二、安装datasmith插件三、导入数据四、检查导入材质是否正常五、编辑替换材质六、安装模型编辑插件七、编辑替换建筑规则 一、导出数…

⌈ 传知代码 ⌋ 辅助任务改进社交帖子多模态分类

&#x1f49b;前情提要&#x1f49b; 本文是传知代码平台中的相关前沿知识与技术的分享~ 接下来我们即将进入一个全新的空间&#xff0c;对技术有一个全新的视角~ 本文所涉及所有资源均在传知代码平台可获取 以下的内容一定会让你对AI 赋能时代有一个颠覆性的认识哦&#x…

WPS表格插件方方格子【凑数】功能:选出和等于固定数字的数

文章目录 后来发现可以下载方方格子插件&#xff0c;使用【凑数】功能https://ffcell.lanzouj.com/iwhfc1kjhayh【凑数】快速【凑数】 导师让沾发票&#xff0c;需要选出若干个数额的发票&#xff0c;使它们的和等于一个指定数。不知道怎么办了&#xff0c;查了一下&#xff0c…

实验9 浮动静态路由配置

--名称-- 一、 原理描述二、 实验目的三、 实验内容四、 实验配置五、 实验步骤 一、 原理描述 浮动静态路由也是一种特殊的静态路由&#xff0c;主要考虑链路冗余。浮动静态路由通过配置一条比主路由优先级低的静态路由&#xff0c;用于保证在主路由失效的情况下&#xff0c;…

为什么我们需要在软件本地化过程中使用术语服务?

你知道软件翻译和本地化的术语服务吗&#xff1f;此解决方案涵盖源术语和目标术语的创建、开发和维护。所有术语都存储在具有多个字段的数据库中&#xff0c;包括术语定义、用法示例、上下文和历史记录。这使我们能够正确处理每个术语的创建或更改请求&#xff0c;避免创建重复…

orbslam2代码解读(1):数据预处理过程

写orbslam2代码解读文章的初衷 首先最近陆陆续续花了一两周时间学习视觉slam&#xff0c;因为之前主要是做激光slam&#xff0c;有一定基础所以学的也比较快&#xff0c;也是看完了视觉14讲的后端后直接看orbslam2的课&#xff0c;看的cvlife的课&#xff08;课里大部分是代码…

SpringBoot+Vue校园管理系统(前后端分离)

技术栈 JavaSpringBootMavenMyBatisMySQLVueElement-UIShiro 系统角色 管理员用户院系管理员 系统功能截图

OrangePi KunPengPro | linux系统下挂载U盘

OrangePi KunPengPro | linux系统下挂载U盘 时间&#xff1a;2024年6月6日21:32:53 文章目录 OrangePi KunPengPro | linux系统下挂载U盘1.参考2.操作fdisk -l 列出系统上所有磁盘的分区表信息将 /dev/sda1 分区挂载到 /mnt/udisk/ 目录显示文件系统的磁盘空间使用情况卸载文件…

LeetCode-704. 二分查找【数组 二分查找】

LeetCode-704. 二分查找【数组 二分查找】 题目描述&#xff1a;解题思路一&#xff1a;注意开区间和闭区间背诵版&#xff1a;解题思路三&#xff1a; 题目描述&#xff1a; 给定一个 n 个元素有序的&#xff08;升序&#xff09;整型数组 nums 和一个目标值 target &#xf…

27 - 求关注者的数量(高频 SQL 50 题基础版)

27 - 求关注者的数量 selectuser_id,count(*) followers_count fromFollowers group byuser_id;

使用Vue.js将form表单传递到后端

一.form表单 <form submit.prevent"submitForm"></form> form表单像这样写出来&#xff0c;然后把需要用户填写的内容写在form表单内。 二.表单内数据绑定 <div class"input-container"><div style"margin-left: 9px;"&…

网络安全:https劫持

文章目录 参考https原理https窃听手段SSL/TLS降级原理难点缺点 SSL剥离原理发展缺点前端劫持 MITM攻击透明代理劫持 参考 https原理 SNI 浏览器校验SSL证书 https降级 https握手抓包解析 lets encrypt申请证书 https原理 步骤如下&#xff1a; 客户端向服务器发送https请求。…

搭贝请假审批应用

在现代企业管理中&#xff0c;高效的请假审批系统至关重要。搭贝的请假审批应用通过简化员工的请假流程、提升管理层的工作效率&#xff0c;确保企业运作的连贯性和透明度。本文将介绍搭贝请假审批应用的主要功能模块&#xff1a;请假分析看板、请假申请审批流、请假类型维护和…