深度神经网络——什么是扩散模型?

1. 概述


在人工智能的浩瀚领域中,扩散模型正成为技术创新的先锋,它们彻底改变了我们处理复杂问题的方式,特别是在生成式人工智能方面。这些模型基于高斯过程、方差分析、微分方程和序列生成等坚实的数学理论构建。

业界巨头如Nvidia、Google、Adobe和OpenAI开发的尖端AI产品和服务,使得扩散模型成为业界的热点。以OpenAI的DALL·E 2、Stable Diffusion和midjourney为例,这些模型因其能够将简单的文本提示转化为生动图像而近期在互联网上引起了广泛关注。例如,通过midjourney v5,只需输入“充满活力的加州罂粟花”,模型便能创造出相应的图像。

2. 什么是扩散模型?

扩散模型,也称为去噪扩散概率模型,是一种先进的生成模型,它通过模仿数据的自然扩散过程来创造新的样本。这种模型的设计理念受到了自然界中扩散现象的启发,例如热量或物质在空间中的传播。

在技术层面,扩散模型通过变分推理来训练一个参数化的马尔可夫链。马尔可夫链是一种数学工具,用于描述系统状态随时间的转移,这里的“状态”可以是图像中的像素配置、音频信号的波形,或其他任何形式的数据表示。在这个过程中,系统的未来状态仅依赖于当前状态,而与过去的状态无关,这称为马尔可夫性质。

变分推理是一种强大的概率推断方法,它允许我们在复杂的概率模型中进行有效的近似计算。在扩散模型的上下文中,变分推理用于找到最佳的模型参数,这些参数定义了如何从数据中逐步引入噪声(正向过程),以及如何从噪声中恢复出清晰的数据(逆向过程)。

经过训练的扩散模型能够生成高质量的样本,这些样本在统计上与训练数据一致,但在内容上是全新的。例如,如果模型接受了大量的猫的图像作为训练数据,它就能捕捉到猫的关键特征,并生成新的、逼真的猫的图像,即使这些图像在训练集中从未出现过。
在这里插入图片描述

3. 如何解读人工智能中的扩散模型?

扩散模型是一类深度生成模型,它们通过在数据中添加噪声(通常是高斯噪声)并逐步去除噪声来生成新的样本。这个过程包括两个阶段:前向扩散过程和反向扩散过程。在前向扩散过程中,数据逐渐被噪声所扰乱;而在反向扩散过程中,模型则学习如何逐步逆转这一过程,以恢复原始数据或生成新的数据样本。
在这里插入图片描述

扩散模型类别

扩散模型背后的三个基本数学框架包括:

  1. 去噪扩散概率模型(DDPM):这类模型基于非平衡热力学理论,使用潜在变量来估计概率分布。它们可以被视为一种特殊类型的变分自编码器(VAE),其中前向扩散阶段对应于VAE中的编码过程,而反向扩散阶段对应于解码过程。

  2. 基于噪声条件得分的网络(NCSN):这类模型通过训练共享神经网络来进行得分匹配,以估计不同噪声水平下扰动数据分布的得分函数(定义为对数密度的梯度)。

  3. 随机微分方程(SDE):这是一种替代方式来模拟扩散过程,通过前向和反向SDE可以导致有效的生成策略以及强大的理论结果。基于SDE的表述可以被视为DDPM和NCSN的泛化。

去噪扩散概率模型(DDPM)

DDPM是一种生成模型,它通过逐步去除噪声来恢复视觉或音频数据。例如,在电影制作行业中,DDPM可以用于提高图像和视频的质量,通过去除噪声和恢复细节来增强视觉效果。

基于噪声条件评分的生成模型(SGM)

SGM可以根据给定的分布生成新样本,通过学习估计目标分布的对数密度的得分函数来工作。例如,生成对抗网络(GAN)中的得分匹配技术可以用于生成高质量、逼真的人脸图像,尽管这些技术可能被用于不当目的,如制作虚假视频。

随机微分方程(SDE)

SDE用于描述随时间变化的随机过程,广泛应用于物理和金融市场中,这些领域中的随机因素对市场结果有重大影响。例如,在金融领域,SDE可以用来计算金融衍生品的价格,如期货合约,通过对波动进行建模来提供准确的定价。

扩散模型因其生成高质量和多样化样本的能力而受到广泛赞誉,尽管它们在计算上存在负担,即在采样过程中由于涉及的步骤数量多而导致速度较慢。这些模型在图像生成、超分辨率、修复、编辑、翻译等多个领域都有应用,并在不断推动深度生成建模的边界。

4. 扩散模型在人工智能中的主要应用

扩散模型在人工智能领域的应用非常广泛,它们在生成高质量视频和图像方面表现出色。以下是扩散模型在人工智能中的一些主要应用:

高质量视频生成

扩散模型可以用于生成高质量的视频内容。这些模型通过在给定的视频帧之间插入额外的帧来增加视频的帧率(FPS),从而提高视频的流畅性和连续性。例如,Make-A-Video 和 Imagen Video 等模型能够生成逼真的视频,它们利用扩散模型来学习和模拟视频中的动态变化。

文本到图像生成

扩散模型也被广泛应用于文本到图像的生成任务中。这些模型根据用户提供的文本提示生成相应的图像。例如,GLIDE 和 DALL-E 等模型能够根据文本描述生成高质量的图像。这些模型通常结合了深度学习和自然语言处理技术,以实现对文本的深入理解和图像的精确生成。

其他应用

扩散模型还被用于其他多种生成任务,如图像超分辨率、图像修复、图像风格转换等。这些应用展示了扩散模型在处理图像数据时的灵活性和强大能力。

未来展望

扩散模型作为一种新兴的生成模型,其研究和应用仍在快速发展中。随着技术的不断进步,我们可以期待扩散模型在未来将在更多领域发挥重要作用,包括但不限于视频游戏、电影制作、虚拟现实、增强现实等。

5. 人工智能中的扩散模型——未来会发生什么?

扩散模型确实是生成高质量图像和视频的强大工具,并且在人工智能领域中具有广泛的应用潜力。它们通过逐步引入噪声并在逆过程中去除噪声来生成数据样本,这一过程模仿了物理中的扩散现象。扩散模型在生成高质量样本方面的能力使它们在图像合成、视频生成、以及与自然语言处理结合的多模态任务中表现出色。

除了扩散模型,人工智能领域还有其他几种流行的生成模型,包括:

  1. 生成对抗网络(GANs):由Goodfellow等人于2014年提出,GANs通过训练两个网络——生成器和判别器——来进行对抗性训练。生成器产生数据,而判别器评估数据的真实性。这种对抗性训练可以产生逼真的图像和视频。

  2. 变分自编码器(VAEs):由Kingma和Welling于2013年提出,VAEs通过编码器将输入数据映射到一个潜在空间,然后通过解码器重构数据。它们通常用于生成新的数据样本,并能够学习数据的潜在表示。

  3. 基于流的深度生成模型:这类模型通过一系列可逆的变换来生成数据。由于其可逆性,可以很容易地计算生成数据的对数似然,这使得它们在某些任务上非常有用。

了解这些不同模型的特性和优势对于设计和实现有效的人工智能解决方案至关重要。随着技术的不断进步,我们可以预见扩散模型和其他生成模型将在艺术创作、娱乐、设计、医疗成像、数据增强等领域发挥更大的作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/684730.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

STM32(七):ADC电位检测 (标准库函数)

前言 上一篇文章已经介绍了如何用STM32单片机中的定时器的PWM波来实现LED的“呼吸”。这篇文章我们来介绍一下如何用STM32单片机中ADC进行电位检测,并发送到XCOM串口中显示。 一、实验原理 1.ADC模数转换的介绍 首先,我们先介绍一下AD模数模块&#…

驱动开发:内核扫描SSDT挂钩状态

100编程书屋_孔夫子旧书网 在笔者上一篇文章《驱动开发:内核实现SSDT挂钩与摘钩》中介绍了如何对SSDT函数进行Hook挂钩与摘钩的,本章将继续实现一个新功能,如何检测SSDT函数是否挂钩,要实现检测挂钩状态有两种方式,第一种方式则是类似于《驱动开发:摘除InlineHook内核钩…

免费,C++蓝桥杯等级考试真题--第11级(含答案解析和代码)

C蓝桥杯等级考试真题--第11级 答案:D 解析: A. a b; b a; 这种方式会导致a和b最终都等于b原来的值,因为a的原始值在被b覆盖前没有保存。 B. swap(a,b); 如果没有自定义swap函数或者没有包含相应的库,这个选项会编…

Mysql执行一条语句都有哪些操作

Mysql的执行流程 MySQL 的架构共分为两层:Server 层和存储引擎层, Server 层负责建立连接、分析和执行 SQL。MySQL 大多数的核心功能模块都在这实现,主要包括连接器,查询缓存、解析器、预处理器、优化器、执行器等。另外&#xf…

Linux——PXE_FTP_EL8

PXE Kickstart ( el8 ) 使用两个网口一个用net接口用于下载服务和软件包,另一个为仅主机用于与其他的空主机相连 PXE(preboot execute environment) 预启动执行环境。支持工作站通过网络从远端服务器下载映像,并由此支持通过网络启…

JavaWeb2-Vue

Vue 前端框架,免除原生JS中的DOM操作简化书写 (以前学过又忘了,现在才知道原来vue是前端的) 基于MVVM思想(model-view -viewModel)实现数据双向绑定 model是数据模型 view负责数据展示 即DOM 中间这个负责…

可视化表单生成器好用吗?

当前的社会竞争是非常大的,随着业务的上涨,很多客户都需要找到更高效、更理想的软件平台产品实现流程化办公。这就需要了解低代码技术平台了。作为新的办公助力软件平台,低代码技术平台更好操作、更灵活、功能更多,其中可视化表单…

生产管理看板系统为优化工厂车间生产工艺

一、行业现状,管理中普遍存在的问题 1. 先进的管理流程与相应管理制度匮乏。大量管理工作依旧主要采取“人治”模式,众多高层自身理论知识欠缺,并且还难以听取相关人员的意见。 2. 生产过程的控制较为薄弱。企业全面质量控制(TQ…

LSP5526 直接替用 LSP5502 SOP-8降压直流转换器

LSP5526 作为一款高性能的降压型直流-直流转换器,在医疗设备中的应用非常广泛。由于其具有高效率、宽输入电压范围以及良好的稳定性等特点,它可以为医疗设备中的关键电子系统提供稳定的电源支持。以下是一些具体的医疗设备应用案例: 1. 医用监…

人大金仓数据库报sys_user表字段不存在的问题

目录 一.问题: 二.原因 三.解决方法: 一.问题: 公司的一个项目从oracle切换到人大金仓之后,突然报了一个sys_user里面的字段不存在。 二.原因 检查了很多次确信sys_user表没问题,查了相应的文档之后发现原来人大金…

笔记96:前馈控制 + 航向误差

1. 回顾 对于一个 系统而言,结构可以画作: 如果采用 这样的控制策略,结构可以画作:(这就是LQR控制) 使用LQR控制器,可以通过公式 和 构建一个完美的负反馈系统; a a 但是有上…

【C语言】指针(4)

一、回顾 在这之前,我们学习了很多关于指针的内容,我们先在这里简单的回顾一下。 1、一级指针 int* p; -- 整形指针-指向整形的指针 char* p; ... void* p;... ... 2、二级指针 int** p; char** p; ... 3、数组指针 -- 指向数组的指针 int (*p)[ ]…

采用_findfirst和_findnext获取当前文件夹下以及子文件夹下特定文件

1.相关知识点: 在实现此功能,主要使用到的函数包含,_findfirst()、_findnext()、_findclose()。通过使用上述函数以及配合结构体 _finddata_t 来达到一个遍历的效果。 _finddata_t的结构体信息 struct _finddata64i32_t {unsigned attrib…

Linux.小技巧快捷键

1. ctrl c 强制停止 终止某些程序的运行 也可以取消某行命令 2. ctrl d 退出或登出 进入python环境中,使用ctrl d 退出 3.history 查看历史使用了哪些命令 4. ! 历史最近使用的命令的开头 5.使用ctrl r 搜索历史使用的命令 按下 ctrl r 会进入 reverse -…

course-nlp——5-nn-imdb

本文参考自https://github.com/fastai/course-nlp。这部分是fastai1.0版本的教程,由于现在fastai2.0重构的改变非常大,所以文中的很多api都变了,由于学习目的并不是熟练掌握fastai,因此这里就简单的存一下,本文是用IMD…

2024-04-27 - AI for everyone - 第三周 - 吴恩达

摘要 2024-05-01 周三 杭州 阴 小记: (☆-v-) 2024-05-03 周四 杭州 🌤 小记: 这几天地铁好拥挤呀!不过体重已经减了 2 公斤 ,咔咔咔,继续坚持 2024-05-04 周四 杭州 🐟 小记: 因为在意,所以昨天有些事情超级不开心,但是我决定要彻底舍弃了,羁绊这种东西本就可…

探索数据结构:堆,计数,桶,基数排序的分析与模拟实现

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:数据结构与算法 贝蒂的主页:Betty’s blog 1. 堆排序 1.1. 算法思想 堆排序(Heap Sort)是一种基于堆数据结构的排…

R语言绘图 | 双Y轴截断图

教程原文:双Y轴截断图绘制教程 本期教程 本期教程,我们提供的原文的译文,若有需求请回复关键词:20240529 小杜的生信笔记,自2021年11月开始做的知识分享,主要内容是R语言绘图教程、转录组上游分析、转录组…

【kubernetes】探索k8s集群安全机制

目录 一、认证(Authentication) 1.1三种认证方式 1.2需要被认证的访问类型: 1.3安全性说明: 1.4证书颁发: 1.5kubeconfig 1.6Service Account 1.7Secret 与 SA 的关系 1.7.1Kubernetes 设计了一种资源对象叫做…

CSS 前端面试题学习笔记2

嗨,我是小路。今天主要和大家分享的主题是“前端CSS面试题-2”。 一、主要题目 1.画一条0.5px的直线 注意:浏览器默认最小像素单位为1px ,小于1px的自动默认为1px。如果给0.5px,那么浏览器会直接显示为1px,只有通过sca…