Docker桥接网络分析

前言

《虚拟局域网(VLAN)》一文中描述了虚拟网卡、虚拟网桥的作用,以及通过iptables实现了vlan联网,其实学习到这里自然就会联想到目前主流的容器技术:Docker,因此接下来打算研究一下Docker的桥接网络与此有何异同。

猜测

众所周知,Docker有host、bridge、none三种网络模式,这里我们仅分析桥接(bridge)模式。有了上一篇文章的基础,bridge这个概念我们应该已经熟悉了,bridge网桥是一种基于mac地址数据链路层进行数据交换的一个虚拟交换机

所以我们现在可以大胆的进行猜测:Docker也是基于此模式实现了内部网络通信。

  • 猜测一:Docker引擎在创建容器的时候会自动为容器创建一对虚拟网卡(veth)并为其分配私有ip,然后将veth一端连接在docker0网桥中,另一端连接在容器的内部网络中
  • 猜测二:Docker同样利用iptables的nat能力将容器内流量转发至互联网实现通信。

求证

检查主机网卡列表

检查docker容器及网卡列表,观察是否存在docker网桥以及veth。

shell
# 查看本机正在运行的coekr容器(mysql、redis、halo、debian)
[root@VM-8-10-centos ~]# docker ps 
CONTAINER ID   IMAGE                COMMAND                  CREATED         STATUS         PORTS                                                  NAMES
56ffaf39316a   debian               "bash"                   23 hours ago    Up 7 minutes                                                          debian
c8a273ce122e   halohub/halo:1.5.3   "/bin/sh -c 'java -X…"   5 months ago    Up 47 hours    0.0.0.0:8090->8090/tcp, :::8090->8090/tcp              halo
d09fcfa7de0f   redis                "docker-entrypoint.s…"   12 months ago   Up 5 weeks     0.0.0.0:8805->6379/tcp, :::8805->6379/tcp              redis
87a2192f6db4   mysql:5.7            "docker-entrypoint.s…"   2 years ago     Up 5 weeks     0.0.0.0:3306->3306/tcp, :::3306->3306/tcp, 33060/tcp   mysql
# 检查主机网卡列表(确认docker0、veth存在)
[root@VM-12-15-centos ~]# ip link 
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default qlen 1000
    link/ether 52:54:00:b3:6f:20 brd ff:ff:ff:ff:ff:ff
    altname enp0s5
    altname ens5
3: br-67cf5bfe7a5c: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default 
    link/ether 02:42:c5:07:22:c7 brd ff:ff:ff:ff:ff:ff
4: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN mode DEFAULT group default 
    link/ether 02:42:38:d6:1b:ea brd ff:ff:ff:ff:ff:ff
5: br-9fd151a807e7: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default 
    link/ether 02:42:35:7f:ed:76 brd ff:ff:ff:ff:ff:ff
315: vethf2afb37@if314: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master br-67cf5bfe7a5c state UP mode DEFAULT group default 
    link/ether 3a:06:f0:8d:06:f6 brd ff:ff:ff:ff:ff:ff link-netnsid 12
317: veth1ec30f9@if316: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master br-9fd151a807e7 state UP mode DEFAULT group default 
    link/ether 4a:ad:1a:b0:5a:5f brd ff:ff:ff:ff:ff:ff link-netnsid 0
319: vethc408286@if318: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master br-67cf5bfe7a5c state UP mode DEFAULT group default 
    link/ether 26:b0:3c:f4:c5:5b brd ff:ff:ff:ff:ff:ff link-netnsid 1
321: veth68fb8c6@if320: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master br-67cf5bfe7a5c state UP mode DEFAULT group default 
    link/ether 96:ca:a9:42:f8:a8 brd ff:ff:ff:ff:ff:ff link-netnsid 9
323: veth6dba394@if322: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master br-67cf5bfe7a5c state UP mode DEFAULT group default 
    link/ether 92:1c:5e:9c:a2:b3 brd ff:ff:ff:ff:ff:ff link-netnsid 4
325: veth1509ed0@if324: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master br-67cf5bfe7a5c state UP mode DEFAULT group default 
    link/ether fa:22:33:da:12:e0 brd ff:ff:ff:ff:ff:ff link-netnsid 11
329: vethef1dbac@if328: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master br-67cf5bfe7a5c state UP mode DEFAULT group default 
    link/ether aa:db:d2:10:36:60 brd ff:ff:ff:ff:ff:ff link-netnsid 3
331: veth69d3e7d@if330: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master br-67cf5bfe7a5c state UP mode DEFAULT group default 
    link/ether 86:45:d0:0e:6b:a7 brd ff:ff:ff:ff:ff:ff link-netnsid 5
335: veth98588ae@if334: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master br-67cf5bfe7a5c state UP mode DEFAULT group default 
    link/ether 86:59:55:39:17:ad brd ff:ff:ff:ff:ff:ff link-netnsid 7
349: vetha84d717@if348: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master br-67cf5bfe7a5c state UP mode DEFAULT group default 
    link/ether ee:7f:d2:27:15:83 brd ff:ff:ff:ff:ff:ff link-netnsid 6
354: veth1@if355: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master br-mybridge state UP mode DEFAULT group default qlen 1000
    link/ether 72:c8:9e:24:a6:a3 brd ff:ff:ff:ff:ff:ff link-netns n1
356: br-mybridge: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000
    link/ether 72:c8:9e:24:a6:a3 brd ff:ff:ff:ff:ff:ff

使用ip link查看本机网卡列表,可以发现宿主机存在一个名为docker0的虚拟网桥,且虚拟网桥下有四对虚拟网卡分别对应 debian、halo、redis、mysql四个docker容器

检查网桥ip及Docker内部容器的网络通信

shell
# docker0默认网桥的IP地址为172.17.0.1/16
[root@VM-8-10-centos ~]# ip addr show docker0
3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default 
    link/ether 02:42:6f:d7:19:7e brd ff:ff:ff:ff:ff:ff
    inet 172.17.0.1/16 scope global docker0
       valid_lft forever preferred_lft forever
    inet6 fe80::42:6fff:fed7:197e/64 scope link 
       valid_lft forever preferred_lft forever
# 检查桥接网络内部容器的ip地址(分别为172.17.0.2/16、172.17.0.3/16、172.17.0.4/16、172.17.0.5/16)       
[root@VM-8-10-centos ~]# docker network inspect bridge
[
    {
        "Name": "bridge",
        "Id": "2dc75e446719be8cad37e1ea9ae7d1385fcc728b8177646a3c62929c2b289e94",
        "Created": "2024-04-24T09:46:14.399901891+08:00",
        "Scope": "local",
        "Driver": "bridge",
        "EnableIPv6": false,
        "IPAM": {
            "Driver": "default",
            "Options": null,
            "Config": [
                {
                    "Subnet": "172.17.0.0/16",
                    "Gateway": "172.17.0.1"
                }
            ]
        },
        "Internal": false,
        "Attachable": false,
        "Ingress": false,
        "ConfigFrom": {
            "Network": ""
        },
        "ConfigOnly": false,
        "Containers": {
            "56ffaf39316ac9f776c6b3e2a8a79e9f42dfab42aa1f7de7525bd26c686defaa": {
                "Name": "debian",
                "EndpointID": "47dd9441d4a4c8b09afea3bca23652b80ba35e6baa13d44ec21ec89522e722a6",
                "MacAddress": "02:42:ac:11:00:05",
                "IPv4Address": "172.17.0.5/16",
                "IPv6Address": ""
            },
            "87a2192f6db48c9bf2996bf25c79d4c18c3ae2975cac9d55e7fdfdcec03f896b": {
                "Name": "mysql",
                "EndpointID": "00b93de23c5abf2ed1349bac1c2ec93bf7ed516370dabf23348b980f19cfaa9c",
                "MacAddress": "02:42:ac:11:00:02",
                "IPv4Address": "172.17.0.2/16",
                "IPv6Address": ""
            },
            "c8a273ce122ef5479583908f40898141a90933a3c41c8028dc7966b9af4c465d": {
                "Name": "halo",
                "EndpointID": "ba8ef83c80f3edb6e7987c95ae6d56816a1fc00d07e8bb2bfbb0f19ef543badf",
                "MacAddress": "02:42:ac:11:00:04",
                "IPv4Address": "172.17.0.4/16",
                "IPv6Address": ""
            },
            "d09fcfa7de0f2a7b3ef7927a7e53a8a53fb93021b119b1376fe4616381c5a57c": {
                "Name": "redis",
                "EndpointID": "afbc9128f7d27becfbf64e843a92d36ce23800cd42c131e550abea7afb6a131e",
                "MacAddress": "02:42:ac:11:00:03",
                "IPv4Address": "172.17.0.3/16",
                "IPv6Address": ""
            }
        },
        "Options": {
            "com.docker.network.bridge.default_bridge": "true",
            "com.docker.network.bridge.enable_icc": "true",
            "com.docker.network.bridge.enable_ip_masquerade": "true",
            "com.docker.network.bridge.host_binding_ipv4": "0.0.0.0",
            "com.docker.network.bridge.name": "docker0",
            "com.docker.network.driver.mtu": "1500"
        },
        "Labels": {}
    }
] 
# 进入debian容器测试内部网络通信和互联网通信
[root@VM-8-10-centos ~]# docker exec -it debian /bin/bash
root@56ffaf39316a:/# ping 172.17.0.1
PING 172.17.0.1 (172.17.0.1) 56(84) bytes of data.
64 bytes from 172.17.0.1: icmp_seq=1 ttl=64 time=0.071 ms
64 bytes from 172.17.0.1: icmp_seq=2 ttl=64 time=0.036 ms
--- 172.17.0.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.036/0.053/0.071/0.017 ms
root@56ffaf39316a:/# ping 172.17.0.3
PING 172.17.0.3 (172.17.0.3) 56(84) bytes of data.
64 bytes from 172.17.0.3: icmp_seq=1 ttl=64 time=0.067 ms
64 bytes from 172.17.0.3: icmp_seq=2 ttl=64 time=0.047 ms
--- 172.17.0.3 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1000ms
rtt min/avg/max/mdev = 0.047/0.057/0.067/0.010 ms
root@56ffaf39316a:/# ping baidu.com
PING baidu.com (39.156.66.10) 56(84) bytes of data.
64 bytes from 39.156.66.10 (39.156.66.10): icmp_seq=1 ttl=247 time=59.0 ms
64 bytes from 39.156.66.10 (39.156.66.10): icmp_seq=2 ttl=247 time=55.4 ms
--- baidu.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 55.400/57.221/59.043/1.821 ms
小结

通过shell的结果分析:docker0网桥的ip为172.17.0.1/16,docker0各子网通信正常,并且通过ping baidu.com检查了互联网通信也正常。因此可以得出docker桥接模式与前一章中vlan模式是一致的,都是通过一个虚拟网桥实现了内部网络的通信

docker内部通信脉络图

Docker容器与互联网进行通信

在上一章节中不小心留了个坑,因为firewalld在iptables中内置了很多的规则,所以对于流量的分析很不友好,所以我索性直接关闭了firewalld,但是紧接着就发现这样做有一个副作用:firewalld关闭后,iptables也会被清空。当时不觉得有什么影响,现在仔细回想了一下vlan之所以能够连接互联网,很大一部分原因是利用了iptables的nat功能,iptables被清空,意味着nat功能被关闭了,所以利用此功能的应用会失去网络连接。下面使用shell命令来模拟并分析此现象。

shell
# 关闭firewalld
[root@VM-8-10-centos ~]# systemctl stop firewalld
# 检查iptables
[root@VM-8-10-centos ~]# iptables -nvL
Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target     prot opt in     out     source               destination         

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target     prot opt in     out     source               destination         

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target     prot opt in     out     source               destination
[root@VM-8-10-centos ~]# iptables -t nat -nvL
Chain PREROUTING (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target     prot opt in     out     source               destination         

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target     prot opt in     out     source               destination         

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target     prot opt in     out     source               destination         

Chain POSTROUTING (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target     prot opt in     out     source               destination 
# 检查debian容器互联网连接情况 
[root@VM-8-10-centos ~]# docker exec -it debian /bin/bash
root@56ffaf39316a:/# ping baidu.com
PING baidu.com (110.242.68.66) 56(84) bytes of data.
--- baidu.com ping statistics ---
5 packets transmitted, 0 received, 100% packet loss, time 4000ms
# 检查内部网络连接情况
root@56ffaf39316a:/# ping 172.17.0.1
PING 172.17.0.1 (172.17.0.1) 56(84) bytes of data.
64 bytes from 172.17.0.1: icmp_seq=1 ttl=64 time=0.041 ms
64 bytes from 172.17.0.1: icmp_seq=2 ttl=64 time=0.046 ms
--- 172.17.0.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1000ms
rtt min/avg/max/mdev = 0.041/0.043/0.046/0.002 ms
root@56ffaf39316a:/# ping 172.17.0.2
PING 172.17.0.2 (172.17.0.2) 56(84) bytes of data.
64 bytes from 172.17.0.2: icmp_seq=1 ttl=64 time=0.081 ms
64 bytes from 172.17.0.2: icmp_seq=2 ttl=64 time=0.055 ms
--- 172.17.0.2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.055/0.068/0.081/0.013 ms

通过清空iptables发现docker容器内部确实丢失了互联网连接,但是没有影响内部网络的通信。

手动添加nat记录恢复Docker容器与互联网的通信
# 添加snat记录
[root@VM-8-10-centos ~]# iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
# 检查debian容器互联网连接情况 
[root@VM-8-10-centos ~]# docker exec -it debian /bin/bash
root@56ffaf39316a:/# ping baidu.com
PING baidu.com (39.156.66.10) 56(84) bytes of data.
64 bytes from 39.156.66.10 (39.156.66.10): icmp_seq=1 ttl=247 time=55.8 ms
64 bytes from 39.156.66.10 (39.156.66.10): icmp_seq=2 ttl=247 time=55.4 ms
--- baidu.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 55.386/55.610/55.834/0.224 ms

个人总结: docker容器与互联网进行通信时确实依赖iptables,且行为上与vlan几乎一致,因此我认为Docker其实是vlan+iptables一种高级应用。
docker容器互联网通信脉络图

思考

docker容器内的网络通信是否也基于二层协议进行数据交换?

基于之前对vlan的了解,明白了bridge是一种工作在"数据链路层",根据mac地址交换数据帧的虚拟交换机,既然工作在二层,那么意味着它在进行数据交换时是没有ip概念的,仅仅是按照mac地址转发数据帧。既然如此,那么即使删除了它的ip地址和路由表,应该也可以完成数据交换。

[root@VM-8-10-centos ~]# ip addr del 172.17.0.1/16 dev docker0
[root@VM-8-10-centos ~]# ip addr show docker0
3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default 
    link/ether 02:42:6f:d7:19:7e brd ff:ff:ff:ff:ff:ff
    inet6 fe80::42:6fff:fed7:197e/64 scope link 
       valid_lft forever preferred_lft forever
[root@VM-8-10-centos ~]# docker exec -it debian /bin/bash
root@56ffaf39316a:/# ping 172.17.0.3 
PING 172.17.0.3 (172.17.0.3) 56(84) bytes of data.
64 bytes from 172.17.0.3: icmp_seq=1 ttl=64 time=0.066 ms
64 bytes from 172.17.0.3: icmp_seq=2 ttl=64 time=0.049 ms
--- 172.17.0.3 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1000ms
rtt min/avg/max/mdev = 0.049/0.057/0.066/0.008 ms

iptables与路由表有何联系和区别?谁决定了流量的出口网卡?

学习vlan的时候就存在一个疑惑:**虚拟网桥进行互联网通信时,将流入网桥的流量转发到出口网卡是由谁决定的?**当时做vlan的nat通信时,因为需要在iptables中配置FORWARD及NAT规则,自然而然的会认为是iptables实现的。如此的话,那么路由表存在的意义又是什么呢?**所以到底是iptables实现了流量转发,还是路由表(ip route)实现了流量转发?**或者具体点讲:是谁将流量从docker0网卡转发到eth0网卡?

具体过程需要深入分析iptables的工作原理,这里就不再赘述了,直接给出个人结论仅供参考。

个人结论:路由表不对流量做任何更改,仅仅用来确定数据包的出口网卡,iptables可以对ip数据包进行过滤、修改、转发,但最终还是由路由表确定出口网卡。

即使没有snat,数据包是不是应该也可以到达对方网络?

在互联网中基于ip协议进行通信的流量都会被标注源地址目的地址,目的地址决定了流量应该如何发送给对方主机,源地址决定了其他主机如何区分数据包是由谁发送的。而SNAT的核心概念是通过转换源地址的方式进行工作的,这是否意味着即使不配置snat,数据包依然可以到达对方网络,只是对方网络无法回复。

# 假设我有两台具有公网ipv4地址的云服务器xxx.xxx.xxx.xx1和xxx.xxx.xxx.xx2。xx1局域网内有另一台主机x10

# xx1主机
# 使用snat将源ip由xx1转换为xx2
[root@VM-8-10-centos ~]# iptables -t nat -A POSTROUTING -s xx1 -o eth0 -j SNAT --to-source xxx.xxx.xxx.x10
# 监听eth0网卡的icmp数据包
[root@VM-8-10-centos ~]# tcpdump -i eth0 -p icmp -nv | grep x10

# xx2主机
# 监听eth0网卡的icmp数据包
[root@VM-8-10-centos ~]# tcpdump -i eth0 -p icmp -nv 	

根据tcpdump抓包分析xx1确实发送了源地址为x10的数据包,但是从xx2主机的监听结果看并没有收到来自xx1或来自x10发送的数据包。或许是数据包在中途路由的过程中被丢弃了,又或者是我理解错了??

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/680237.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

将Java程序打包为为.exe文件

将Java程序打包为为.exe文件 将Java程序打包为为.exe文件分为俩个步骤&#xff1a; 1、将Java程序打包成Jar包&#xff08;此时就可复制桌面便于使用&#xff09; 2、打包为.exe文件&#xff08;需要借助工具&#xff09; 一、打包为.exe文件 1. file -> Project Structure…

linux网络基础 DHCP和ftp 02

一、DHCP DHCP&#xff1a;动态主机配置协议。 1、DHCP原理 服务端和客户端 服务端&#xff1a;提供某种特定的服务客户端&#xff1a;使用这种特定的服务c/s client/servre 客户端 服务端 应用程序之间通过端口进行通信&#xff0c;实现c/sb/s browser/server 浏览器 服务…

深度学习——卷积神经网络(CNN)

深度学习 深度学习就是通过多层神经网络上运用各种机器学习算法学习样本数据的内在规律和表示层次&#xff0c;从而实现各种任务的算法集合。各种任务都是啥&#xff0c;有&#xff1a;数据挖掘&#xff0c;计算机视觉&#xff0c;语音识别&#xff0c;自然语言处理等。‘ 深…

生成式AI时代已来,你是否做好了准备?

面对正在来临的生成式AI时代&#xff0c;从个人到企业&#xff0c;都应该为之做好充足的准备。 生成式AI时代的黎明已经来临 “生成式AI时代的黎明已经来临&#xff0c;它将会改变我们每个人的生活和工作方式、改变每一个行业。”在近日召开的2024亚马逊云科技中国峰会上&#…

甲方的苛刻,是成就优质作品的必要条件,辩证看待。

取其上、得其中&#xff0c;取其中&#xff0c;得其下&#xff0c;取其下、则无所的。在进行B端界面的设计的时候&#xff0c;设计师除了自我加压外&#xff0c;还少不了客户的严格要求&#xff0c;贝格前端工场为大家辩证分析一下。 一、严格产出高品质作品 甲方提出苛刻的要…

vue改造四级树状可输入table

vue改造四级树状可输入table <template><div class"dimension_wary"><div class"itemHeader"><div class"target"></div><div class"sort">X2</div><div class"weight">…

使用Ollama+OpenWebUI本地部署Gemma谷歌AI开放大模型完整指南

&#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f916;AI大模型部署与应用专栏&#xff1a;点击&#xff01; &#x1f916;Ollama部署LLM专栏&#xff1a;点击&#xff01; ⏰️创作时间&#xff1a;2024年6月4日10点50分 &#x1f004;️文章质量&#xff1…

2024年工业设计与智能城市国际会议(ICIDSC 2024)

2024 International Conference on Industrial Design and Smart Cities 【1】大会信息 大会时间&#xff1a;2024-07-26 大会地点&#xff1a;中国三亚 截稿时间&#xff1a;2024-07-12(以官网为准&#xff09; 审稿通知&#xff1a;投稿后2-3日内通知 会议官网&#xff1a;…

从实战案例来学习结构化提示词(一)

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,所以创建了“AI信息Gap”这个公众号,专注于分享AI全维度知识,包括但不限于AI科普,AI工具测评,AI效率提升,AI行业洞察。关注我,AI之…

python MNE EEG:从预处理到绘制事件相关光谱扰动(ERSP/ERDS)

** 参考&#xff1a;https://weisihong9.github.io/2024/05/15/MNE_EEG/ **

RabbitMQ docker安装及使用

1. docker安装RabbitMQ docker下载及配置环境 docker pull rabbitmq:management # 创建用于挂载的目录 mkdir -p /home/docker/rabbitmq/{data,conf,log} # 创建完成之后要对所创建文件授权权限&#xff0c;都设置成777 否则在启动容器的时候容易失败 chmod -R 777 /home/doc…

【C++练级之路】【Lv.24】异常

快乐的流畅&#xff1a;个人主页 个人专栏&#xff1a;《算法神殿》《数据结构世界》《进击的C》 远方有一堆篝火&#xff0c;在为久候之人燃烧&#xff01; 文章目录 引言一、异常的概念及定义1.1 异常的概念1.2 异常的定义 二、异常的使用2.1 异常的栈展开匹配2.2 异常的重新…

vs2019 c++20 规范 STL库中关于时间的模板 ratio<T,U> , duration<T,U> , time_point<T,U>等

(探讨一)在学习线程的时候&#xff0c;一些函数会让线程等待或睡眠一段时间。函数形参是时间单位&#xff0c;那么在 c 中是如何记录和表示时间的呢&#xff1f;以下给出模板简图&#xff1a; &#xff08;2 探讨二&#xff09;接着给出对模板类 duration_values 的成员函数的测…

【Ubuntu】超详细安装Ubuntu系统

鉴于有些小伙伴在安装Ubuntu系统的时候遇到很多问题&#xff0c;因此打算编写一篇记录一下安装Ubuntu系统的整个过程~互相学习&#xff01; 一、制作U盘启动 准备一个大于8G以上的U盘&#xff0c;这里我使用的是16G的U盘下载UltraISO工具 网站地址&#xff1a;UltraISO准备Ub…

linux部署运维3——centos7下导入导出mysql数据库的sql文件以及查询数据量最大的表信息

在实际项目开发或者项目运维过程中&#xff0c;数据库的导入导出操作比较频繁&#xff0c;如果可以借助第三方工具那当然算喜事一桩&#xff1b;但是如果不允许外部访问&#xff0c;那么就只能使用数据库自带的命令&#xff0c;也是相当方便的。 一.导入sql文件 1.在linux命令…

【STM32】STM32F103C6T6标准外设库

1、标准外设库获取 第一步&#xff0c;首先获取标准外设库&#xff0c;可以从官网进行下载。 https://www.st.com.cn/zh/embedded-software/stm32-standard-peripheral-libraries.html 根据自己的型号选择不同的系列&#xff0c;我这里选择是STM32F1系列 下载最新版本V3.6&a…

基于springboot实现疫情信息管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现疫情信息管理系统演示 摘要 近年来&#xff0c;信息化管理行业的不断兴起&#xff0c;使得人们的日常生活越来越离不开计算机和互联网技术。首先&#xff0c;根据收集到的用户需求分析&#xff0c;对设计系统有一个初步的认识与了解&#xff0c;确定疫情信息…

在iPad上恢复丢失数据的3方法

iPad概览 iPad不仅可以用来看电影&#xff0c;还可以用来工作和学习。使用 Apple Pencil&#xff0c;您可以在 iPad 上做笔记、画画、制作音乐、编辑视频和在课堂上教学等。同时&#xff0c;由于体积小&#xff0c;您可以在商务旅行中轻松随身携带。因此&#xff0c;iPad已成为…

换3次燃气灶才明白,原来电焰灶才是最适合的那个

厨房&#xff0c;这个家的温馨角落&#xff0c;不仅承载着美食的诞生&#xff0c;更记录着我对烹饪的热爱与探索。在我漫长的烹饪生涯中&#xff0c;我曾三次更换燃气灶&#xff0c;每一次都带给我不同的体验与感悟。然而&#xff0c;直到最近我换上了华火电焰灶&#xff0c;才…