Arduino ESP8266模块TFT液晶屏

ESP8266模块

模块实物图:
在这里插入图片描述
模块引脚定义:
在这里插入图片描述
在这里插入图片描述
工作模式选择:

  • FlashBoot启动模式:
    GPIO15接GND

  • UART固件下载模式:
    GPIO15接GND, GPIO0接GND

  • 调试串口:
    URXD/UTXD 可用来下载固件和调试信息输出

  • 模块使能:
    CH_DP接高电平模块上电,接低电平模块掉电

模块上电默认波特率74880
第一行打印boot mode:(1,x) 已经进入下载模式
ets Jan 8 2013,rst cause:1, boot mode:(1,6)

FlashBoot mode:
第一行打印ets Jan 8 2013,rst cause:1, boot mode:(3,6)

显示屏引脚定义:
0.96inch,TFT彩屏,分辨率:160x80, ST7735驱动
在这里插入图片描述

Arduino启动串口工具

在这里插入图片描述

Arduino ESP8266安装包

文件=》首选项=》其他开发板管理器地址:
https://arduino.esp8266.com/stable/package_esp8266com_index.json
在这里插入图片描述

选择开发板

工具=》开发板=》esp8266=>Generic ESP8266 Module
(根据实际开发板型号选择,本文选择通用模块)
在这里插入图片描述

安装TFT_eSPI库

库管理=》搜索TFT_eSPI 点击《安装》按钮即可安装
在这里插入图片描述

修改TFT_eSPI配置文件

打开项目文件下libraries/TFT_eSPI/User_Setup.h根据实际需要修改配置
在这里插入图片描述
在这里插入图片描述
本例修改如下:

//                            USER DEFINED SETTINGS
//   Set driver type, fonts to be loaded, pins used and SPI control method etc.
//
//   See the User_Setup_Select.h file if you wish to be able to define multiple
//   setups and then easily select which setup file is used by the compiler.
//
//   If this file is edited correctly then all the library example sketches should
//   run without the need to make any more changes for a particular hardware setup!
//   Note that some sketches are designed for a particular TFT pixel width/height

// User defined information reported by "Read_User_Setup" test & diagnostics example
#define USER_SETUP_INFO "User_Setup"

// Define to disable all #warnings in library (can be put in User_Setup_Select.h)
//#define DISABLE_ALL_LIBRARY_WARNINGS

// ##################################################################################
//
// Section 1. Call up the right driver file and any options for it
//
// ##################################################################################

// Define STM32 to invoke optimised processor support (only for STM32)
//#define STM32

// Defining the STM32 board allows the library to optimise the performance
// for UNO compatible "MCUfriend" style shields
//#define NUCLEO_64_TFT
//#define NUCLEO_144_TFT

// STM32 8-bit parallel only:
// If STN32 Port A or B pins 0-7 are used for 8-bit parallel data bus bits 0-7
// then this will improve rendering performance by a factor of ~8x
//#define STM_PORTA_DATA_BUS
//#define STM_PORTB_DATA_BUS

// Tell the library to use parallel mode (otherwise SPI is assumed)
//#define TFT_PARALLEL_8_BIT
//#defined TFT_PARALLEL_16_BIT // **** 16-bit parallel ONLY for RP2040 processor ****

// Display type -  only define if RPi display
//#define RPI_DISPLAY_TYPE // 20MHz maximum SPI

// Only define one driver, the other ones must be commented out
//#define ILI9341_DRIVER       // Generic driver for common displays
//#define ILI9341_2_DRIVER     // Alternative ILI9341 driver, see https://github.com/Bodmer/TFT_eSPI/issues/1172
#define ST7735_DRIVER      // Define additional parameters below for this display
//#define ILI9163_DRIVER     // Define additional parameters below for this display
//#define S6D02A1_DRIVER
//#define RPI_ILI9486_DRIVER // 20MHz maximum SPI
//#define HX8357D_DRIVER
//#define ILI9481_DRIVER
//#define ILI9486_DRIVER
//#define ILI9488_DRIVER     // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high)
//#define ST7789_DRIVER      // Full configuration option, define additional parameters below for this display
//#define ST7789_2_DRIVER    // Minimal configuration option, define additional parameters below for this display
//#define R61581_DRIVER
//#define RM68140_DRIVER
//#define ST7796_DRIVER
//#define SSD1351_DRIVER
//#define SSD1963_480_DRIVER
//#define SSD1963_800_DRIVER
//#define SSD1963_800ALT_DRIVER
//#define ILI9225_DRIVER
//#define GC9A01_DRIVER

// Some displays support SPI reads via the MISO pin, other displays have a single
// bi-directional SDA pin and the library will try to read this via the MOSI line.
// To use the SDA line for reading data from the TFT uncomment the following line:

// #define TFT_SDA_READ      // This option is for ESP32 ONLY, tested with ST7789 and GC9A01 display only

// For ST7735, ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are swapped on your display
// Try ONE option at a time to find the correct colour order for your display

//  #define TFT_RGB_ORDER TFT_RGB  // Colour order Red-Green-Blue
//  #define TFT_RGB_ORDER TFT_BGR  // Colour order Blue-Green-Red

// For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below

// #define M5STACK

// For ST7789, ST7735, ILI9163 and GC9A01 ONLY, define the pixel width and height in portrait orientation
#define TFT_WIDTH  80
// #define TFT_WIDTH  128
// #define TFT_WIDTH  172 // ST7789 172 x 320
// #define TFT_WIDTH  170 // ST7789 170 x 320
// #define TFT_WIDTH  240 // ST7789 240 x 240 and 240 x 320
#define TFT_HEIGHT 160
// #define TFT_HEIGHT 128
// #define TFT_HEIGHT 240 // ST7789 240 x 240
// #define TFT_HEIGHT 320 // ST7789 240 x 320
// #define TFT_HEIGHT 240 // GC9A01 240 x 240

// For ST7735 ONLY, define the type of display, originally this was based on the
// colour of the tab on the screen protector film but this is not always true, so try
// out the different options below if the screen does not display graphics correctly,
// e.g. colours wrong, mirror images, or stray pixels at the edges.
// Comment out ALL BUT ONE of these options for a ST7735 display driver, save this
// this User_Setup file, then rebuild and upload the sketch to the board again:

// #define ST7735_INITB
// #define ST7735_GREENTAB
// #define ST7735_GREENTAB2
// #define ST7735_GREENTAB3
// #define ST7735_GREENTAB128    // For 128 x 128 display
#define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset)
// #define ST7735_ROBOTLCD       // For some RobotLCD Arduino shields (128x160, BGR, https://docs.arduino.cc/retired/getting-started-guides/TFT)
// #define ST7735_REDTAB
// #define ST7735_BLACKTAB
// #define ST7735_REDTAB160x80   // For 160 x 80 display with 24 pixel offset

// If colours are inverted (white shows as black) then uncomment one of the next
// 2 lines try both options, one of the options should correct the inversion.

// #define TFT_INVERSION_ON
// #define TFT_INVERSION_OFF


// ##################################################################################
//
// Section 2. Define the pins that are used to interface with the display here
//
// ##################################################################################

// If a backlight control signal is available then define the TFT_BL pin in Section 2
// below. The backlight will be turned ON when tft.begin() is called, but the library
// needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be
// driven with a PWM signal or turned OFF/ON then this must be handled by the user
// sketch. e.g. with digitalWrite(TFT_BL, LOW);

// #define TFT_BL   32            // LED back-light control pin
// #define TFT_BACKLIGHT_ON HIGH  // Level to turn ON back-light (HIGH or LOW)



// We must use hardware SPI, a minimum of 3 GPIO pins is needed.
// Typical setup for ESP8266 NodeMCU ESP-12 is :
//
// Display SDO/MISO  to NodeMCU pin D6 (or leave disconnected if not reading TFT)
// Display LED       to NodeMCU pin VIN (or 5V, see below)
// Display SCK       to NodeMCU pin D5
// Display SDI/MOSI  to NodeMCU pin D7
// Display DC (RS/AO)to NodeMCU pin D3
// Display RESET     to NodeMCU pin D4 (or RST, see below)
// Display CS        to NodeMCU pin D8 (or GND, see below)
// Display GND       to NodeMCU pin GND (0V)
// Display VCC       to NodeMCU 5V or 3.3V
//
// The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin
//
// The DC (Data Command) pin may be labelled AO or RS (Register Select)
//
// With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more
// SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS
// line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin
// to be toggled during setup, so in these cases the TFT_CS line must be defined and connected.
//
// The NodeMCU D0 pin can be used for RST
//
//
// Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin
// If 5V is not available at a pin you can use 3.3V but backlight brightness
// will be lower.


// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ######

// For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation
#define TFT_MISO  PIN_D6  // Automatically assigned with ESP8266 if not defined
#define TFT_MOSI  PIN_D7  // Automatically assigned with ESP8266 if not defined
#define TFT_SCLK  PIN_D5  // Automatically assigned with ESP8266 if not defined

#define TFT_CS    PIN_D8  // Chip select control pin D8
#define TFT_DC    PIN_D3  // Data Command control pin
#define TFT_RST   PIN_D4  // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST  -1     // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V


//#define TFT_BL PIN_D1  // LED back-light (only for ST7789 with backlight control pin)

//#define TOUCH_CS PIN_D2     // Chip select pin (T_CS) of touch screen

//#define TFT_WR PIN_D2       // Write strobe for modified Raspberry Pi TFT only


// ######  FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES  ######

// Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact
// but saves pins for other functions. It is best not to connect MISO as some displays
// do not tristate that line when chip select is high!
// Note: Only one SPI device can share the FLASH SPI lines, so a SPI touch controller
// cannot be connected as well to the same SPI signals.
// On NodeMCU 1.0 SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode
// On NodeMCU V3  S0 =MISO, S1 =MOSI, S2 =SCLK
// In ESP8266 overlap mode the following must be defined

//#define TFT_SPI_OVERLAP

// In ESP8266 overlap mode the TFT chip select MUST connect to pin D3
//#define TFT_CS   PIN_D3
//#define TFT_DC   PIN_D5  // Data Command control pin
//#define TFT_RST  PIN_D4  // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST  -1  // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V


// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP   ######

// For ESP32 Dev board (only tested with ILI9341 display)
// The hardware SPI can be mapped to any pins

//#define TFT_MISO 19
//#define TFT_MOSI 23
//#define TFT_SCLK 18
//#define TFT_CS   15  // Chip select control pin
//#define TFT_DC    2  // Data Command control pin
//#define TFT_RST   4  // Reset pin (could connect to RST pin)
//#define TFT_RST  -1  // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST

// For ESP32 Dev board (only tested with GC9A01 display)
// The hardware SPI can be mapped to any pins

//#define TFT_MOSI 15 // In some display driver board, it might be written as "SDA" and so on.
//#define TFT_SCLK 14
//#define TFT_CS   5  // Chip select control pin
//#define TFT_DC   27  // Data Command control pin
//#define TFT_RST  33  // Reset pin (could connect to Arduino RESET pin)
//#define TFT_BL   22  // LED back-light

//#define TOUCH_CS 21     // Chip select pin (T_CS) of touch screen

//#define TFT_WR 22    // Write strobe for modified Raspberry Pi TFT only

// For the M5Stack module use these #define lines
//#define TFT_MISO 19
//#define TFT_MOSI 23
//#define TFT_SCLK 18
//#define TFT_CS   14  // Chip select control pin
//#define TFT_DC   27  // Data Command control pin
//#define TFT_RST  33  // Reset pin (could connect to Arduino RESET pin)
//#define TFT_BL   32  // LED back-light (required for M5Stack)

// ######       EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP        ######

// The library supports 8-bit parallel TFTs with the ESP32, the pin
// selection below is compatible with ESP32 boards in UNO format.
// Wemos D32 boards need to be modified, see diagram in Tools folder.
// Only ILI9481 and ILI9341 based displays have been tested!

// Parallel bus is only supported for the STM32 and ESP32
// Example below is for ESP32 Parallel interface with UNO displays

// Tell the library to use 8-bit parallel mode (otherwise SPI is assumed)
//#define TFT_PARALLEL_8_BIT

// The ESP32 and TFT the pins used for testing are:
//#define TFT_CS   33  // Chip select control pin (library pulls permanently low
//#define TFT_DC   15  // Data Command control pin - must use a pin in the range 0-31
//#define TFT_RST  32  // Reset pin, toggles on startup

//#define TFT_WR    4  // Write strobe control pin - must use a pin in the range 0-31
//#define TFT_RD    2  // Read strobe control pin

//#define TFT_D0   12  // Must use pins in the range 0-31 for the data bus
//#define TFT_D1   13  // so a single register write sets/clears all bits.
//#define TFT_D2   26  // Pins can be randomly assigned, this does not affect
//#define TFT_D3   25  // TFT screen update performance.
//#define TFT_D4   17
//#define TFT_D5   16
//#define TFT_D6   27
//#define TFT_D7   14

// ######       EDIT THE PINs BELOW TO SUIT YOUR STM32 SPI TFT SETUP        ######

// The TFT can be connected to SPI port 1 or 2
//#define TFT_SPI_PORT 1 // SPI port 1 maximum clock rate is 55MHz
//#define TFT_MOSI PA7
//#define TFT_MISO PA6
//#define TFT_SCLK PA5

//#define TFT_SPI_PORT 2 // SPI port 2 maximum clock rate is 27MHz
//#define TFT_MOSI PB15
//#define TFT_MISO PB14
//#define TFT_SCLK PB13

// Can use Ardiuno pin references, arbitrary allocation, TFT_eSPI controls chip select
//#define TFT_CS   D5 // Chip select control pin to TFT CS
//#define TFT_DC   D6 // Data Command control pin to TFT DC (may be labelled RS = Register Select)
//#define TFT_RST  D7 // Reset pin to TFT RST (or RESET)
// OR alternatively, we can use STM32 port reference names PXnn
//#define TFT_CS   PE11 // Nucleo-F767ZI equivalent of D5
//#define TFT_DC   PE9  // Nucleo-F767ZI equivalent of D6
//#define TFT_RST  PF13 // Nucleo-F767ZI equivalent of D7

//#define TFT_RST  -1   // Set TFT_RST to -1 if the display RESET is connected to processor reset
                        // Use an Arduino pin for initial testing as connecting to processor reset
                        // may not work (pulse too short at power up?)

// ##################################################################################
//
// Section 3. Define the fonts that are to be used here
//
// ##################################################################################

// Comment out the #defines below with // to stop that font being loaded
// The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not
// normally necessary. If all fonts are loaded the extra FLASH space required is
// about 17Kbytes. To save FLASH space only enable the fonts you need!

#define LOAD_GLCD   // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH
#define LOAD_FONT2  // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters
#define LOAD_FONT4  // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters
#define LOAD_FONT6  // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm
#define LOAD_FONT7  // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-.
#define LOAD_FONT8  // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-.
//#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT
#define LOAD_GFXFF  // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts

// Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded
// this will save ~20kbytes of FLASH
#define SMOOTH_FONT


// ##################################################################################
//
// Section 4. Other options
//
// ##################################################################################

// For RP2040 processor and SPI displays, uncomment the following line to use the PIO interface.
//#define RP2040_PIO_SPI // Leave commented out to use standard RP2040 SPI port interface

// For RP2040 processor and 8 or 16-bit parallel displays:
// The parallel interface write cycle period is derived from a division of the CPU clock
// speed so scales with the processor clock. This means that the divider ratio may need
// to be increased when overclocking. It may also need to be adjusted dependant on the
// display controller type (ILI94341, HX8357C etc.). If RP2040_PIO_CLK_DIV is not defined
// the library will set default values which may not suit your display.
// The display controller data sheet will specify the minimum write cycle period. The
// controllers often work reliably for shorter periods, however if the period is too short
// the display may not initialise or graphics will become corrupted.
// PIO write cycle frequency = (CPU clock/(4 * RP2040_PIO_CLK_DIV))
//#define RP2040_PIO_CLK_DIV 1 // 32ns write cycle at 125MHz CPU clock
//#define RP2040_PIO_CLK_DIV 2 // 64ns write cycle at 125MHz CPU clock
//#define RP2040_PIO_CLK_DIV 3 // 96ns write cycle at 125MHz CPU clock

// For the RP2040 processor define the SPI port channel used (default 0 if undefined)
//#define TFT_SPI_PORT 1 // Set to 0 if SPI0 pins are used, or 1 if spi1 pins used

// For the STM32 processor define the SPI port channel used (default 1 if undefined)
//#define TFT_SPI_PORT 2 // Set to 1 for SPI port 1, or 2 for SPI port 2

// Define the SPI clock frequency, this affects the graphics rendering speed. Too
// fast and the TFT driver will not keep up and display corruption appears.
// With an ILI9341 display 40MHz works OK, 80MHz sometimes fails
// With a ST7735 display more than 27MHz may not work (spurious pixels and lines)
// With an ILI9163 display 27 MHz works OK.

// #define SPI_FREQUENCY   1000000
// #define SPI_FREQUENCY   5000000
// #define SPI_FREQUENCY  10000000
// #define SPI_FREQUENCY  20000000
#define SPI_FREQUENCY  27000000
// #define SPI_FREQUENCY  40000000
// #define SPI_FREQUENCY  55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz)
// #define SPI_FREQUENCY  80000000

// Optional reduced SPI frequency for reading TFT
#define SPI_READ_FREQUENCY  20000000

// The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here:
#define SPI_TOUCH_FREQUENCY  2500000

// The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default.
// If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam)
// then uncomment the following line:
//#define USE_HSPI_PORT

// Comment out the following #define if "SPI Transactions" do not need to be
// supported. When commented out the code size will be smaller and sketches will
// run slightly faster, so leave it commented out unless you need it!

// Transaction support is needed to work with SD library but not needed with TFT_SdFat
// Transaction support is required if other SPI devices are connected.

// Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex)
// so changing it here has no effect

// #define SUPPORT_TRANSACTIONS

Arduino新建项目

#include <TFT_eSPI.h>
#include "SoftI2C.h"


TFT_eSPI tft =TFT_eSPI();
TFT_eSprite spr = TFT_eSprite(&tft);

void setup() {
  // put your setup code here, to run once:
  Serial.begin(115200);
  Serial.println("demo...");

  tft.init();                // 初始化
  tft.setRotation(1);        // 设置屏幕方向,0:0度,1:90度,2:180度,3:270度
  tft.fillScreen(TFT_BLACK); // 设置屏幕背景颜色
  tft.setTextColor(TFT_WHITE, TFT_BLACK); // 参数1:字体颜色,参数2:背景色
  
}

void loop() {
  // put your main code here, to run repeatedly:

  static int hour = 23;
  static int minute = 55;
  static int second = 56;
  char buffer[64];

  // 时分
  sprintf(buffer, "%d:%d", hour, minute);
  tft.setTextFont(6);
  tft.drawString(buffer, 0, 5);

  // 秒
  tft.setTextFont(4);
  tft.drawNumber(second, 160-32, 20);

  // 年月日
  tft.setTextFont(4);
  tft.drawString("2024/02/15", 0, 60);

  // 星期
  tft.setTextFont(4);
  tft.drawNumber(7, 160-32, 60);
  second += 1;
  second %= 60;
  if (0 == second) {
    minute += 1;
    minute %= 60;
  }
  delay(1000);
  Serial.printf("LCD Update:%d:%d:%d\n", hour, minute, second);
}

编译下载固件

注意:先把GPIO15接GND,GPIO0接GND,CH_PD上拉(10K)再给模块供电3.3V进入UART固件下载模式。另外串口要选择实际端口:
在这里插入图片描述

运行效果:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/678830.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

安装源码moveit遇到的问题

文章目录 问题1、 在操作 rosdep update 时报超时错误问题2、E: 仓库 “http://mirrors.ustc.edu.cn/ros/ubuntu focal Release” 没有 Release 文件问题3、卸载ompl问题4、安装moveit 问题1、 在操作 rosdep update 时报超时错误 出现 访问 https://raw.githubusercontent.com…

【官方文档解读】torch.jit.script 的使用,并附上官方文档中的示例代码

由 OpenMMLab 的部署教程 所述&#xff0c;对于模型中存在有控制条件的&#xff08;如 if&#xff0c;for 等&#xff09;&#xff0c;需要用 torch.jit.script 而非采样默认的 torch.jit.trace 方法。本文则详细介绍了下官方文档中对 torch.jit.script 的解释和示例代码。 to…

SemiDrive X9H 平台 QT 静态编译

一、 前言 芯驰 X9H 芯片&#xff0c;搭载多个操作系统协同运行&#xff0c;系统实现了仪表、空调、中控、副驾多媒体的四屏驱动控制&#xff0c;在人车智能交互上可以通过显示屏、屏幕触摸控制、语音控制、物理按键控制、车身协议的完美融合&#xff0c;使汽车更智能。让车主…

“论软件系统建模方法”必过范文,突击2024软考高项论文

论文部分 摘要 2023年03月&#xff0c;我参与了某艺术品公司线上拍卖管理平台的研发。该项目的目标是建立一个互联网在线拍卖平台&#xff0c;用户可以通过手机或PC浏览器进入拍卖平台&#xff0c;对喜欢的拍品进行参拍出价。平台提供了在线支付、在线出价、保证金管理、拍品…

通信技术信号源硬件实验

定义 1.RZ码&#xff08;归零码&#xff09; RZ编码也成为归零码&#xff0c;归零码的特性就是在一个周期内&#xff0c;用二进制传输数据位&#xff0c;在数据位脉冲结束后&#xff0c;需要维持一段时间的低电平。 2.NRZ码&#xff08;不归零编码&#xff09; NRZ编码也成为…

AVL树的介绍与实现

前言 我们上一期介绍了二叉搜索树并做了实现&#xff0c;本期我们来继续学习另一个更优的树即AVL树&#xff01; 本期内容介绍 什么是AVL树&#xff1f; AVL树的实现 AVL树的性能分析 在正式的介绍AVL树之前&#xff0c;我们先来回忆一下二叉搜索树的特点&#xff1a;左子树的…

nnUNet保姆级使用教程!从环境配置到训练与推理(新手必看)

文章目录 写在前面nnUNet是什么&#xff1f;一、配置虚拟环境二、安装nnUNet框架1.安装nnUNet这一步我遇到的两个问题&#xff1a; 2.安装隐藏层hiddenlayer&#xff08;可选&#xff09; 三、数据集准备nnUNet对于你要训练的数据是有严格要求的&#xff0c;这第一点就体现在我…

pushowl | 运用分销裂变模式实现业绩快速增长

一、公司简介 PushOwl公司是一家专注于为电子商务商店提供在线营销工具的印度初创企业。以下是对PushOwl公司的详细介绍&#xff1a; 基本信息&#xff1a; 所属公司&#xff1a;Creatorbox Softwares Private Limited 成立日期&#xff1a;2018年 所属地&#xff1a;印度 …

103.网络游戏逆向分析与漏洞攻防-ui界面的设计-加速功能的开关设计

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 如果看不懂、不知道现在做的什么&#xff0c;那就跟着做完看效果&#xff0c;代码看不懂是正常的&#xff0c;只要会抄就行&#xff0c;抄着抄着就能懂了 内容…

RDMA (1)

RDMA是什么 Remote Direct Memory Access(RDMA)是用来给有高速需求的应用释放网络消耗的。 RDMA在网络的两个应用之间进行低延迟,高吞吐的内存对内存的直接数据通信。 InfiniBand需要部署独立的协议。 RoCE(RDMA over Converged Ethernet),也是由InfiniBand Trade Associat…

【吊打面试官系列】Java高并发篇 - Java 线程数过多会造成什么异常?

大家好&#xff0c;我是锋哥。今天分享关于 【Java 线程数过多会造成什么异常&#xff1f;】面试题&#xff0c;希望对大家有帮助&#xff1b; Java 线程数过多会造成什么异常&#xff1f; 1、线程的生命周期开销非常高 1000道 互联网大厂Java工程师 精选面试题-Java资源分享…

postman教程-12-保存请求至Collections

领取资料&#xff0c;咨询答疑&#xff0c;请➕wei: June__Go 上一小节我们学习了Postman管理环境的方法&#xff0c;本小节我们讲解一下Postman保存请求至Collections集合的方法。 1、创建Collection 在保存Request请求之前&#xff0c;先创建一个Collection(集合)&#…

【网络编程开发】1.网络结构 2.IP地址与端口号 3.字节序

网络编程开发 两台计算机要互相传送文件需解决很多问题&#xff1a; 必须有一条传送数据的通路。发起方必须激活通路。要告诉网络如何识别接收方。发起方要清楚对方是否已开机&#xff0c;且与网络连接正常。发起方要清楚对方是否准备好接收和存储文件。若文件格式不兼容&…

藏品名称:龙凤呈祥摆件

藏品名称:龙凤呈祥摆件 规格:重约 14.3Kg 藏品类别:杂项 此器身布满繁缠纹饰。器表为一轮红日出于东方,照耀辽阔江海。红日旁边有两点黄金凸显其尊贵。一神龙首尾相接有祥云伴随,大山脚下栖息着一只凤凰与神龙遥相呼应。龙身和龙尾交接处有花和花蕊,花开富贵象征着吉祥。整个…

Esxi的安装问题处理: Failed to verify signatures of the following vib(s)

前言 在安装esxi的时候报错 如下图&#xff1a; 自己在安装过程中遇到点问题 Failed to verify signatures of the following vib(s) 一番查找&#xff0c;只要在bios里面关闭 Security boot 就可以解决 Prepping an ESXi 6.7 host for Secure Boot – Mike Foley

9.抽象类和接口

抽象类 抽象类概念 在面向对象的概念中&#xff0c;所有的对象都是通过类来描绘的&#xff0c;但是反过来&#xff0c;并不是所有的类都是用来描绘对象的&#xff0c;如果一个类中没有包含足够的信息来描绘一个具体的对象&#xff0c;这样的类就是抽象类 比如&#xff1a; 我…

Linux网络-自定义协议、序列化和反序列化、网络计算服务器的实现和Windows端客户端

文章目录 前言一、自定义协议传结构体对象 序列化和反序列化什么是序列化&#xff1f;反序列化 二、计算器服务端&#xff08;线程池版本&#xff09;1.main.cc2.Socket.hpp3.protocol.hpp4.Calculator.hpp5.serverCal.hpp6.threadPool.hpp7.Task.hpp8. log.hpp 客户端Windows客…

PS插件一键轻松搞定电商产品摄影图!

在电商行业中&#xff0c;一张高质量的产品摄影图往往能够吸引更多潜在消费者的目光&#xff0c;从而增加产品的销量。然而&#xff0c;对于许多电商卖家和摄影师来说&#xff0c;后期处理产品图片却是一个既耗时又费力的工作。 最近我发现一款PS插件可以一键生成电商产品摄影…

品牌舆情监测系统是什么?怎么监测?

品牌形象与口碑对于企业的重要性不言而喻&#xff0c;品牌舆情监测系统应运而生&#xff0c;成为企业守护品牌声誉的利器。品牌舆情监测系统是什么&#xff1f;怎么选择合适的舆情监测系统&#xff1f;接下来伯乐网络传媒就给大家分享一下。 一、品牌舆情监测系统的应用价值 1…

【一百零四】【算法分析与设计】【模板】二维差分,2132. 用邮票贴满网格图,LCP 74. 最强祝福力场,二位差分,差分思想,记录变化值,离散化技巧

【模板】二维差分 描述 给你一个n行m列的矩阵&#xff0c;下标从1开始。 接下来有q次操作&#xff0c;每次操作输入5个参数x1, y1, x2, y2, k 表示把以(x1, y1)为左上角,(x2,y2)为右下角的子矩阵的每个元素都加上k&#xff0c; 请输出操作后的矩阵。 输入描述&#xff1a; 第一…