科技云报道:走出“实验室”,GenAI迎来关键拐点

科技云报道原创。

对传统产业来说,GenAI是一场“哥白尼式的革命”,它改变了传统的业务模式,开启了人类与AI合作的新纪元。基于AI助手和大语言模型,企业能够实现智能运营的目标。

如果说,2022年是AI大模型元年,那么2024年就是AI大模型从技术切实走向落地的元年。从市场发展趋势来看,各家大模型厂商已经不仅局限于一味地“卷”参数,而是将更多的注意力放在如何在行业侧落地。

与此同时,AI大模型已经在以不可阻挡的趋势向企业侧、行业侧渗透,而GenAI的出现,也让企业对于云计算及AI技术的需求,逐步从技术部门转向业务部门。据市场研究机构预测,到2025年,全球GenAI市场规模将达到100亿美元以上。其中,企业级GenAI市场将占据相当大的份额,成为最大的应用领域之一。

在这里插入图片描述

GenAI将从“实验室”走向“生产线”

随着这一轮AI技术的快速发展,AI已经从“卷”技术走向“卷”应用的阶段,如何帮助用户更好地落地使用AI大模型,用AI大模型为业务提供更多助力已经成为企业的必修课。

根据麦肯锡的研究,GenAI每年对全球经济的贡献至多达7.9万亿美元。GenAI不仅对全球经济产生重要影响,也为各个行业带来了变革机遇。各行各业领先企业已开始积极应用GenAI,并取得成果。从媒体到金融、从医疗到交通,GenAI正成为推动新一轮创新浪潮的核心动力之一。其中,零售和消费品行业、银行业、制药和医疗产品三个行业的价值潜力最大。

今年,Google、OpenAI、阿里巴巴等科技巨头都陆续推出生成式AI技术,但是还没有多少客户真正把GenAI系统投入到业务中。

究其原因,GenAI从理论转向实践企业需要解决两大挑战。第一,要把GenAI投入到企业以及业务用例的过程当中,意味着GenAI将从构建训练基础架构转向构建推理基础架构。这时,企业必须要能更好地理解、搞清楚,除了训练的基础架构,如何打造一个推理的基础架构。这包括“把推理放在什么地方?”训练是在数据中心当中,推理可能会放在边缘,接近企业客户所在的位置。

同时,随着这一转变的发生,如何确保推理基础架构的安全将成为企业关注的重点。因为训练基础架构保护好数据中心就够了,但如果把推理的基础架构部署到现实的世界中,离开数据中心到边缘中,来到了工厂、制造中心和客户所在的地方,包括交通运输的网络中,这样的安全保护的模式就不同了,需要面对不同类型的风险、不同类型的攻击。

第二大挑战是,企业CIO和领导者必须做一个决定,即选出几个需要优先实施的GenAI应用项目,这是很有风险的事情,对企业至关重要,如果选错了会出现大量的资源浪费。“做出正确的选择”要求企业必须充分理解到GenAI的价值,对自己的企业而言GenAI在哪些方面能帮上最大的忙。

此外,GenAI转向实践还将带来一个新趋势,之前大家认为GenAI的成本就是训练成本,即在训练的时候构建模型需要用多少台服务器、需要有多少架构开发和维护的人员等。但是,当GenAI转向实践时,在企业的用例中,在应用阶段的主要成本将是运营成本。

为了帮助企业更好地落地GenAI应用,越来越多的科技巨头推出不同的技术解决方案,以求帮助企业更好地落地AI应用。

从应用层面看,大模型并不是越大越好,企业需要根据自身适用的场景,选择适合自身使用的AI模型产品,企业需要根据不同的任务场景,选择不同的工具。比如医药研究,更大的模型、更大的token和参数很重要,但是一些需要快速响应的领域,例如智能客服,小模型反而能提供更低的延迟,更高的性价比。

从市场格局上看,诸如亚马逊云科技、IBM、微软、阿里云、百度等全球科技巨头也将平台化的大模型产品视为接下来重点布局的方向。显然,平台化、多元化的大模型产品已经成为众多科技巨头积极抢占的市场。

企业引入GenAI的关键点

在国内,GenAI应用发展最迅速的领域包括电商、传媒、娱乐和游戏,尤其是数字虚拟人和电商视频营销,而大部分传统行业(如金融、能源、教育等)仍处于小规模试点阶段。

中国GenAI企业利用国内垂直场景优势,将GenAI优先应用于商业化基础设施较完善的新兴行业中,市场上主流的商业模式包括云资源售卖、模型API调用、SaaS收费、素材收费等,大规模应用GenAI的商业模式仍有待探索。

当前,企业GenAI应用主要有三个定位:创造者——推动核心商业模式转型,重塑核心业务和/或面向客户的方式,例如抵押评估、直接客户互动;塑造者——聚焦幕后整合,改变业务模式的应用程序,例如虚拟专家,前线培训;使用者——有针对性地提高生产力,利用SaaS解决方案,提高现有任务的效率或准确性,例如编码协助、文案写作、客户协助。

企业在考虑引入GenAI时应以速度为先,遵循“四步走”方法论,高效实现GenAI部署和规模化应用。首先,企业应构建“内、外、快、慢”四大战略来平衡企业内部和外部要素,以及速赢举措和端到端体系化转型。

其次,企业应在“负责任的AI”(Responsible AI)框架下,快速制定初版用例图谱和转型路径图。

第三,企业需要根据用例的重要性与潜在效益进行优先级排序,以“先动起来”的方式逐步推进试点工作,为全公司规模化应用夯实基础。

最后,企业需要进行全方位运营模式转型,并将AI内嵌到业务的每个环节,从而实现规模化推广GenAI。

另外,值得注意的是,金融机构在应用GenAI时尤其需要关注模型幻觉、恶意使用、信息泄露等三大关键风险。

GenAI应用的“最后三公里”

一项技术只有应用到生产中才能体现它的真正价值。

从GenAI应用的关键路径来看,从技术应用的想法到最终的生产上线,要经过定义场景、选择合适自己的基础模型、到利用自己的数据做模型适配/调优和评估、再到部署模型、在模型之上构建GenAI应用、评估是否负责任的AI的原则等多个环节。其中,最为关键的是要卡住三个环节:选对业务场景、选择正确的工具、工程化“最后三公里”挑战。

针对业务场景选择,科技巨头亚马逊云科技基于与各个行业企业的共同尝试,总结出了一些容易落地、同时企业收效较快的场景。

其次,针对模型选择,行业客户需求纷繁复杂,“不会有一个模型一统天下”,企业需要根据自身业务的需求来选择合适的模型,因此,很多企业都在采取“多模型”的策略。

企业选择模型时要考虑多方面的因素,但其中最重要的就是在三角形的三点上进行平衡:准确性、成本、响应速度。比如,如果是2C的生成式AI对话应用,响应速度就是最为重要的因素;相反,如果是生成法律文书,那么最重要的因素就是准确性。

第三,技术生态合作的重要性日趋凸显。近日,在亚马逊云科技中国峰会2024上,亚马逊云科技就推出了多个合作伙伴计划,包括GenAI合作伙伴计划、行业合作伙伴计划等。

一方面,亚马逊云科技继续扩展和中国AI大模型厂商的合作,另一方面也更加重视各个垂直行业的智能化应用落地。

比如,亚马逊云科技在会上宣布,百川智能的基础模型Baichuan2-7B、零一万物的基础模型Yi-1.5 6B/9B/34B都将登陆中国区域SageMaker JumpStart,能够为中国企业提供更多模型选择。

垂直行业方面,亚马逊云科技还和四维图新加强合作,计划联合设计并推出面向汽车行业本地化的服务及专属解决方案,涉及智能网联汽车、智能驾驶开发和量产等领域。

即将上任亚马逊科技CEO的马特·加尔曼(Matt Garman)表示,中国是亚马逊云科技全球最具战略重要性的地区之一,过去十多年间,亚马逊云科技持续投资并扩大在中国的基础设施。在他看来,GenAI也将以前所未有的方式改变各行各业。

在帮助合作伙伴拥抱GenAI方面,亚马逊云科技提出了三条路径。首先,是场景选择,需要从自身熟悉的业务场景出发应用GenAI,而不是生搬硬套地将AI技术强加于业务之上。选择契合度高的场景,可以快速找到切入口。

其次是工具/模型的选择,应利用成熟有效的工具和模型,加快落地进程,避免重复“造轮子”。

第三,是融合生态的建设,为打造有竞争力的AI应用,需要充分利用云上融合的生态体系,平衡快速落地与合规治理,两手并重,从而获得可持续的商业价值。

为进一步提高企业的GenAI应用能力,亚马逊云科技还推出了业内首个GenAI能力认证,旨在验证、认可在利用亚马逊云科技GenAI技术方面拥有专业知识、实践经验和成功案例的合作伙伴。

据Canalys全球调查数据统计,在2023年投入生产的GenAI应用之中,有36%是由合作伙伴交付的。亚马逊云科技认为,这个比例未来还会增长。随着GenAI的场景越来越复杂,一定会需要大量的合作伙伴在其中扮演重要的角色,这其中从行业客户而来的更多场景需求是需要合作伙伴来提供的。

亚马逊云科技大中华区合作伙伴及业务赋能总经理李晓芒表示,“在亚马逊云科技合作伙伴网络第二个十年新征程的开局之年,秉持长期主义,我们基于合作伙伴价值成就合作伙伴战略。这将进一步强化亚马逊云科技合作伙伴网络建设,加速为合作伙伴赋能,助力他们实现业务增长和规模化发展,与亚马逊云科技共赢新征程。”

在这里插入图片描述

亚马逊云科技大中华区合作伙伴及业务赋能总经理 李晓芒

GenAI落地行业应用才刚刚开始,谁能先找到创造高价值的场景,谁就会先人一步获得差异化竞争力,这或许比“卷”价格更有意义。以亚马逊云科技为代表的科技企业通过帮助企业提高GenAI的应用能力,让GenAI真正成为提高生产力的工具,为企业和行业打开更大成长空间。

【关于科技云报道】

专注于原创的企业级内容行家——科技云报道。成立于2015年,是前沿企业级IT领域Top10媒体。获工信部权威认可,可信云、数博会、国家网安周与全球云计算等大型活动的官方指定传播媒体之一。深入原创报道云计算、人工智能、大模型、网络安全、大数据、区块链等企业级科技领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/678334.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

mysql终端使用中的错误

在这个过程中,出现了几个问题: 在退出 MySQL 后,你尝试再次使用 mysql 命令登录,但系统提示找不到该命令。这可能是因为 MySQL 的执行文件路径没有加入到系统的环境变量中。你可以尝试使用绝对路径来运行 mysql 命令,或…

教师产假多少天

教师产假究竟有多少天?这个问题或许在您计划家庭时显得尤为重要。教师作为国家公职人员,享有法定的产假权益。 根据规定,女职工的产假一般为98天,包括产前15天和产后83天。但请注意,这一标准并非全国统一,不…

学习算法笔记(7.5)-贪心算法(股票售卖问题)

学到这里的大家应该都非常清楚贪心算法到底是怎么一回事了,说白了就是动态规划的一种特例,没有动态规划的使用范围广,但是效率却比动态规划效率高,贪心算法不考虑之前的情况,只考虑当前的最优选择以期达到最优的结果。…

【python】成功解决“ModuleNotFoundError: No module named ‘IPython’”错误的全面指南

成功解决“ModuleNotFoundError: No module named IPython’”错误的全面指南 一、引言 在Python编程中,ModuleNotFoundError是一种常见的错误类型,它通常表明Python解释器无法找到你试图导入的模块。特别是当你遇到“ModuleNotFoundError: No module…

echarts图例formatter配置添加百分比

echarts图例如何添加百分比 const pieChart async () > {const myChart echarts.init(piepic.value)const piedata await getPieData(); // 等待数据返回myChart.setOption({title: {},grid: {},tooltip: {trigger: item,},legend: {top: middle,align:left,icon: circl…

C# 解决 Excel 自动适应列宽的问题

目录 问题现象 原因分析 范例运行环境 解决问题 生成测试文本 实现自适应 小结 问题现象 通过 COM 操作 Excel 自动适应列宽的方法是 AutoFit 方法,该方法适于自动适应列宽或行高。 最近在我们的一款应用里发现效果并没有符合预期,我们提供了一…

YOLOv10训练自己的数据集

目录 0、引言 1、环境配置 2、数据集准备 3、创建配置文件 3.1、设置官方配置文件:default.yaml,可自行修改。 3.2、设置data.yaml 4、进行训练 4.1、方法一 4.2、方法二 5、验证模型 5.1、命令行输入 5.2、脚本运行 6、总结 0、引言 本文…

【线性代数】SVDPCA

用最直观的方式告诉你:什么是主成分分析PCA_哔哩哔哩_bilibili 奇异值分解singular value decomposition,SVD principal component analysis,PCA 降维操作 pca就是降维后使得信息损失最小 投影在坐标轴上的点越分散,信息保留越多 pca的实现…

C++数据结构之:树Tree

摘要: it人员无论是使用哪种高级语言开发东东,想要更高效有层次的开发程序的话都躲不开三件套:数据结构,算法和设计模式。数据结构是相互之间存在一种或多种特定关系的数据元素的集合,即带“结构”的数据元素的集合&am…

Xcode中给UIView在xib中添加可视化的属性

给UIView在xib中添加可视化的属性 效果如下图: 可以直接设置view 的 borderColor 、borderWidth、cornerRadius,也可以单独指定view的某个角是圆角。减少了代码中的属性。 完整代码: UIView+Border.h #import <UIKit/UIKit.h>@interface UIView (Border)/// 可以…

软件设计师(中级)概要笔记:基于软件设计师教程(第5版)

文章目录 作者前言1、计算机系统知识1.1、计算机系统基础知识1.1.1 计算机系统硬件基本组成1.1.2 中央处理单元1.1.3、数据表示原码、反码、补码和移码&#xff08;符号数&#xff09;符号数的应用定点数和浮点数 1.1.4、校验码奇偶校验循环冗余校验码海明码 1.2、计算机体系…

基于梯度提升树回归模型的房地产价格估计

目录 1. 作者介绍2. 梯度提升树回归算法介绍2.1 算法原理2.2 算法讲解与分析 3. 实验过程3.1 数据集介绍3.2 代码介绍3.3 完整代码实现3.4 测试结果 参考文献 1. 作者介绍 雷强&#xff0c;男&#xff0c;西安工程大学电子信息学院&#xff0c;2023级研究生 研究方向&#xff…

个人笔记-随意记录

常见问题&#xff1f; 1.linux重启服务 端口被占用如何解决&#xff1f; 查看某个端口被占用的进程 netstat -tulnp | grep :23454 强制杀死进程 kill -9 1776 重启服务即可

JDK 22 新特性

JDK各个版本特性查看地址&#xff1a;https://openjdk.org/projects/jdk/17/&#xff08;修改后面数字即可&#xff0c;目前最新的是23&#xff09; JDK 22 于 2024 年 3 月 19 日全面发布。 一&#xff0c;开发计划 2023/12/07Rampdown Phase One (fork from main line) 第…

10款你一定不知道的实用工具!

AI视频生成&#xff1a;小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频https://aitools.jurilu.com/ 1. S激活工具——KMS激活工具 HEU_KMS_Activator&#xff0c;一款KMS激活工具&#xff0c;适用于Windows、Office及VL版本&#xff0c;无需联网…

MySql学习(一)——MySQL概述之MySQL的启动

文章目录 一、MySQl概述1.1 启动MySQL1.2 客户端连接1.3 关系型数据库1.4 总结 一、MySQl概述 数据库&#xff1a;存储数据的仓库&#xff0c;数据是有组织的进行存储&#xff0c;简称为&#xff08;DB&#xff09;数据库管理系统&#xff1a;操纵和管理数据库的大型软件&…

模拟散列表-java

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 前言 一、模拟散列表 二、算法思路 1.散列表 2.拉链法 3.开放寻址法 三、代码如下 1.拉链法代码如下&#xff1a; 2.开放寻址法代码如下&#xff1a; 3.读入数据 3.代码运行结…

scipy.io.loadmat加载.mat文件,出现KeyError: ‘xxx‘

源代码&#xff1a; input_image loadmat(rC:\Users\admin\Downloads\Indian_Pines\SVM/aa.mat)[aa] #影像图 错误显示&#xff1a; 解决方法&#xff1a; 因为loadmat函数读取出来的高光谱数据是dict格式的所以需要定位才能进行后续操作&#xff0c;定位通常是通过列名&a…

GraphQL(4):GraphQL clients访问接口

下面演示在GraphQL clients访问GraphQL 接口 1 修改baseType.js 添加可供用户访问的静态资源路径 代码如下&#xff1a; const express require(express); const {buildSchema} require(graphql); const grapqlHTTP require(express-graphql).graphqlHTTP; // 定义schema…

深度学习500问——Chapter10:强化学习(1)

文章目录 10.1 强化学习的主要特点 10.1.1 定义 10.2 强化学习应用实例 10.3 强化学习和监督式学习、非监督式学习的区别 10.3.1 强化学习和监督式学习的区别 10.3.2 强化学习和非监督式学习的区别 10.1 强化学习的主要特点 其他许多机器学习算法中学习器都是学得怎样做&#…