【iOS】Runtime

文章目录

  • 前言
  • 一、Runtime简介
  • 二、NSObject库起源
    • isa
    • isa_t结构体
    • cache_t的具体实现
    • class_data_bits_t的具体实现
  • 三、[self class] 与 [super class]
  • 四、消息发送与转发
  • 五、Runtime应用场景


前言

之前分part学习了Runtime的内容,但是没有系统的总结,这篇博客用来总结学过的所有Runtime知识

一、Runtime简介

Runtime又叫运行时,是一套底层的C语言API,是iOS系统的核心之一

在编码阶段中,当我们向一个对象发送消息时,编译阶段只是确定了我们需要向接收者发送消息,但是接收者如何响应与处理这条消息是运行时决定的,我们来看一个例子

首先,让我们定义这些类:

#import <Foundation/Foundation.h>

// 基类 Animal
@interface Animal : NSObject
- (void)speak;
@end

@implementation Animal
- (void)speak {
    NSLog(@"Some generic animal sound");
}
@end

// Dog 类继承自 Animal
@interface Dog : Animal
@end

@implementation Dog
- (void)speak {
    NSLog(@"Woof!");
}
@end

// Cat 类继承自 Animal
@interface Cat : Animal
@end

@implementation Cat
- (void)speak {
    NSLog(@"Meow!");
}
@end

现在,我们编写一个主函数来创建不同的动物对象,并对它们调用 speak 方法:

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        // 创建 Animal 类型的数组
        NSArray *animals = @[[[Dog alloc] init], [[Cat alloc] init], [[Animal alloc] init]];
        
        // 遍历数组中的每一个动物,并调用 speak 方法
        for (Animal *animal in animals) {
            [animal speak];
        }
    }
    return 0;
}

可以看到我们animal接受了speak这个方法,但是运行时会查找animal的实际类,并且动态地查找这个类或其父类中的 speak 方法实现

同时OC也是一门动态语言,这意味着它不仅需要一个编译器,更需要一个运行时系统来动态得创建类和对象、进行消息传递和转发

Objc 在三种层面上与 Runtime 系统进行交互:
在这里插入图片描述

  • 层面一:通过OC源代码
    我们只需要编写OC代码,Runtime系统会自动将我们写的代码在编译阶段转换为运行时代码
  • 层面二:通过Foudation框架的NSObject的类自定义方法
    在NSObject协议中有五种方法可以从Runtime中获取信息,并且让对象进行自我检查
- (Class)class OBJC_SWIFT_UNAVAILABLE("use 'anObject.dynamicType' instead");
- (BOOL)isKindOfClass:(Class)aClass;
- (BOOL)isMemberOfClass:(Class)aClass;
- (BOOL)conformsToProtocol:(Protocol *)aProtocol;
- (BOOL)respondsToSelector:(SEL)aSelector;

-class方法返回对象的类;
-isKindOfClass:-isMemberOfClass: 方法检查对象是否存在于指定的类的继承体系中;
-respondsToSelector: 检查对象能否响应指定的消息;
-conformsToProtocol:检查对象是否实现了指定协议类的方法;

在NSObject类中还有一个方法会返回SEL的IMP

- (IMP)methodForSelector:(SEL)aSelector;
  • 层面三:通过对 Runtime 库函数的直接调用
1. Class and Metaclass Functions

	•	objc_getClass(const char *name): 获取指定名称的类。
	•	objc_getMetaClass(const char *name): 获取指定名称的元类。
	•	objc_allocateClassPair(Class superclass, const char *name, size_t extraBytes): 动态创建一个新的类。
	•	objc_registerClassPair(Class cls): 注册一个动态创建的类。

2. Method Functions

	•	class_addMethod(Class cls, SEL name, IMP imp, const char *types): 向类中添加一个方法。
	•	class_replaceMethod(Class cls, SEL name, IMP imp, const char *types): 替换类中的一个方法。
	•	class_getInstanceMethod(Class cls, SEL name): 获取实例方法。
	•	class_getClassMethod(Class cls, SEL name): 获取类方法。
	•	method_getName(Method m): 获取方法的选择器。
	•	method_getImplementation(Method m): 获取方法的实现。

3. Property and Ivar Functions

	•	class_addIvar(Class cls, const char *name, size_t size, uint8_t alignment, const char *types): 向类中添加一个实例变量。
	•	class_getInstanceVariable(Class cls, const char *name): 获取类中的实例变量。
	•	class_getProperty(Class cls, const char *name): 获取类中的属性。
	•	class_addProperty(Class cls, const char *name, const objc_property_attribute_t *attributes, unsigned int attributeCount): 向类中添加属性。

4. Selector Functions

	•	sel_registerName(const char *str): 注册一个选择器。
	•	sel_getUid(const char *str): 获取一个选择器。

5. Protocol Functions

	•	objc_getProtocol(const char *name): 获取指定名称的协议。
	•	objc_allocateProtocol(const char *name): 动态创建一个新的协议。
	•	objc_registerProtocol(Protocol *proto): 注册一个动态创建的协议。
	•	protocol_addMethodDescription(Protocol *proto, SEL name, const char *types, BOOL isRequiredMethod, BOOL isInstanceMethod): 向协议中添加方法描述。
	•	protocol_addProperty(Protocol *proto, const char *name, const objc_property_attribute_t *attributes, unsigned int attributeCount, BOOL isRequiredProperty, BOOL isInstanceProperty): 向协议中添加属性。

6. Object and Messaging Functions

	•	objc_msgSend(id self, SEL op, ... ): 发送消息。
	•	objc_msgSendSuper(struct objc_super *super, SEL op, ... ): 发送消息给父类。
	•	object_getClass(id obj): 获取对象的类。
	•	object_setClass(id obj, Class cls): 设置对象的类。

二、NSObject库起源

刚才说了我们有三种方式可以和Runtime进行交互,前两种方式都与NSObject有关,我们就从NSObject基类开始说起

我们通过源码可以得知NSObject的定义如下:

typedef struct objc_class *Class;

@interface NSObject <NSObject> {
    Class isa  OBJC_ISA_AVAILABILITY;
}

其内部只包含了一个名为isa的Class指针,同时Class指针实际上就是一个objc_class结构体,如何理解这个结构体呢,我们来看一下这个结构体的源码:
Objc2.0之前objc_class源码如下:

struct objc_class {
    Class isa  OBJC_ISA_AVAILABILITY;
    
#if !__OBJC2__
    Class super_class                                        OBJC2_UNAVAILABLE;
    const char *name                                         OBJC2_UNAVAILABLE;
    long version                                             OBJC2_UNAVAILABLE;
    long info                                                OBJC2_UNAVAILABLE;
    long instance_size                                       OBJC2_UNAVAILABLE;
    struct objc_ivar_list *ivars                             OBJC2_UNAVAILABLE;
    struct objc_method_list **methodLists                    OBJC2_UNAVAILABLE;
    struct objc_cache *cache                                 OBJC2_UNAVAILABLE;
    struct objc_protocol_list *protocols                     OBJC2_UNAVAILABLE;
#endif
    
} OBJC2_UNAVAILABLE;

可以看到在一个类中,有超类的指针,类名,版本的信息,同时还有指向成员变量列表的指针,指向方法列表的指针
我们可以通过动态的修改方法列表来达到使用分类向类中添加方法
关于分类的文章之前写过,现在发现一篇更好的,大家可以读一下
深入理解Objective-C:Category

同时在先前说过Category的底层结构体中是有属性列表的,但是为什么不能添加属性呢,这是因为当我们使用@property声明属性时,会自动添加实例变量,但是Category的底层结构体中没有实例变量列表,因此无法实现,同时还有一个原因是编译器不会为分类自动合成set与get方法,但最最主要的原因是rw中没有成员变量列表,不允许修改成员变量

objc2.0之后,objc_class的定义就变了:


typedef struct objc_class *Class;
typedef struct objc_object *id;

@interface Object { 
    Class isa; 
}

@interface NSObject <NSObject> {
    Class isa  OBJC_ISA_AVAILABILITY;
}

struct objc_object {
private:
    isa_t isa;
}

struct objc_class : objc_object {
    // Class ISA;
    Class superclass;
    cache_t cache;             // formerly cache pointer and vtable
    class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags
}

union isa_t 
{
    isa_t() { }
    isa_t(uintptr_t value) : bits(value) { }
    Class cls;
    uintptr_t bits;
}

将源码转换为类图就变成了下面这样子:
在这里插入图片描述
在源码中我们可以看出来所有的对象都包含一个isa_t类型的结构体,这是如何看出来的呢

struct objc_object {
private:
    isa_t isa;
}

struct objc_class : objc_object {
    // Class ISA;
    Class superclass;
    cache_t cache;             // formerly cache pointer and vtable
    class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags
}

从这两段代码我们可以看出来,objc_classobjc_object的子类,我们理解一下这两个结构体名字:
objc_object的意思是对象,也就是在OC中所有对象都有一个isa_t变量,objc_class的意思是类,但是他却继承于对象,那么说明我们的类实际上也是一个对象,也就是类对象

这也就说明了上面的结论:所有的对象都会包含一个isa_t类型的结构体。

objc_object被源码typedef成了id类型,这也说明了为什么任何类型都可以用id来表示,这是因为id类型是所有对象的父类

我们一步步来分析这里面的成员变量,首先是object类和NSObject类里面分别都包含一个objc_class类型的isa

isa

首先我们通过学习消息流程可以知道,当一个对象的方法被调用时,首先会根据isa指针找到相应的类,然后在该类的class_data_bits_t中去查找方法。class_data_bits_t是指向了类对象的数据区域。在该数据区域内查找相应方法的对应实现

同时当调用类方法是也会通过isa查找方法,此时isa指向的是元类(Meta Class),这里有问题可以看先前的博客,不再赘述

同时元类与类对象是唯一的

isa_t结构体

isa_t 是现代Objective-C运行时中的一个重要优化,它通过位域结构封装了 isa 指针,使得它不仅仅是一个指向类的指针,还携带了大量运行时所需的附加信息。通过这种设计,Objective-C运行时能够在保持高效内存使用的同时,提供丰富的对象管理功能。

总结就是isa_t比较抽象,笔者也讲不懂,但是里面用到了Tagged Pointer技术,大家可以去了解
深入理解 Tagged Pointer

cache_t的具体实现

cache_t出现objc_class中,我们来通过源码分析一下

struct cache_t {
    struct bucket_t *_buckets;
    mask_t _mask;
    mask_t _occupied;
}

typedef unsigned int uint32_t;
typedef uint32_t mask_t;  // x86_64 & arm64 asm are less efficient with 16-bits

typedef unsigned long  uintptr_t;
typedef uintptr_t cache_key_t;

struct bucket_t {
private:
    cache_key_t _key;
    IMP _imp;
}


通过源码我们知道了cache_t中存储了一个bucket_t的结构体,和两个unsigned int的变量。

  • mask:分配用来缓存bucket的总数。
  • occupied:表明目前实际占用的缓存bucket的个数。

同时我们看一下bucket_t结构体,他里面只有两个元素,一个是key,一个是IMP
cache_t中的bucket_t *_buckets其实就是一个散列表,用来存储Method的链表

当我们使用方法后,编译器会自动将方法的SEL存为Key,其实现IMP存进bucket_t中的Key对应的IMP中,这样就优化了方法调用的性能,不用每次调用方法时都去方法列表中查找

Cache的作用主要是为了优化方法调用的性能。当对象receiver调用方法message时,首先根据对象receiver的isa指针查找到它对应的类,然后在类的methodLists中搜索方法,如果没有找到,就使用super_class指针到父类中的methodLists查找,一旦找到就调用方法。如果没有找到,有可能消息转发,也可能忽略它。但这样查找方式效率太低,因为往往一个类大概只有20%的方法经常被调用,占总调用次数的80%。所以使用Cache来缓存经常调用的方法,当调用方法时,优先在Cache查找,如果没有找到,再到methodLists查找

class_data_bits_t的具体实现

struct objc_class : objc_object {
    // Class ISA;
    Class superclass;
    cache_t cache;             // formerly cache pointer and vtable
    class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags
}

objc2.0之前我们的objc_class结构体中有十分多的元素,但是更新后就变得十分简洁,这些元素并没有消失,其实都存在了数据区域class_data_bits_t

同样来看源码:


struct class_data_bits_t {

    // Values are the FAST_ flags above.
    uintptr_t bits;
}

struct class_rw_t {
    uint32_t flags;
    uint32_t version;

    const class_ro_t *ro;

    method_array_t methods;
    property_array_t properties;
    protocol_array_t protocols;

    Class firstSubclass;
    Class nextSiblingClass;

    char *demangledName;
}

struct class_ro_t {
    uint32_t flags;
    uint32_t instanceStart;
    uint32_t instanceSize;
#ifdef __LP64__
    uint32_t reserved;
#endif

    const uint8_t * ivarLayout;
    
    const char * name;
    method_list_t * baseMethodList;
    protocol_list_t * baseProtocols;
    const ivar_list_t * ivars;

    const uint8_t * weakIvarLayout;
    property_list_t *baseProperties;

    method_list_t *baseMethods() const {
        return baseMethodList;
    }
};

在这里插入图片描述
objc_class结构体中的注释写到 :
class_data_bits_t相当于 class_rw_t指针加上 rr/alloc 的标志

也就是说先前的属性、方法以及遵循的协议在obj 2.0的版本之后都放在class_rw_t中,那么ro是用来干什么的呢?

我们知道OC作为一门动态语言运行阶段分为编译器与运行期,在编译期类的结构中的 class_data_bits_t *data指向的是一个 class_ro_t *指针:
在这里插入图片描述

在Objc运行时会调用realizeClass方法:

  1. class_data_bits_t 调用 data 方法,将结果从 class_rw_t 强制转换为 class_ro_t 指针,这一步是为了class_rw_tro能被正确赋值
  2. 初始化一个 class_rw_t 结构体
  3. 设置结构体ro的值以及flag
  4. 最后设置正确的data,也就是返回最后的rw结构体(因为原本data指向的是ro
    我们来看一下更改后的图片

在这里插入图片描述
此时realizeClass方法运行后我们的rw结构体已经被初始化,同时ro已经被赋值,但是此时的方法,属性以及协议列表均为空,这时需要 realizeClass 调用 methodizeClass 方法来将类自己实现的方法(包括分类)、属性和遵循的协议加载到 methods、 properties 和 protocols 列表中。

struct method_t {
    SEL name;
    const char *types;
    IMP imp;

    struct SortBySELAddress :
        public std::binary_function<const method_t&,
                                    const method_t&, bool>
    {
        bool operator() (const method_t& lhs,
                         const method_t& rhs)
        { return lhs.name < rhs.name; }
    };
};

同时我们可以再通过这里讲讲我们的消息查找,如果动态修改了方法会生成rw_e结构体,查找方法时会优先去rw_e中查找,否则去ro中查找

三、[self class] 与 [super class]

我们来看一道题目

下面代码输出什么?

 @implementation Son : Father
    - (id)init
    {
        self = [super init];
        if (self)
        {
            NSLog(@"%@", NSStringFromClass([self class]));
            NSLog(@"%@", NSStringFromClass([super class]));
        }
    return self;
    }
    @end

self和super的区别:

self是类一个隐藏参数,每个方法的实现的第一个参数为self

super则负责告诉编译器,调用方法时,去调用父类的方法,而不是本类中的方法

也就是说[super class]调用了objc_msgSendSuper方法,而不是objc_msgSend

OBJC_EXPORT void objc_msgSendSuper(void /* struct objc_super *super, SEL op, ... */ )


/// Specifies the superclass of an instance. 
struct objc_super {
    /// Specifies an instance of a class.
    __unsafe_unretained id receiver;

    /// Specifies the particular superclass of the instance to message. 
#if !defined(__cplusplus)  &&  !__OBJC2__
    /* For compatibility with old objc-runtime.h header */
    __unsafe_unretained Class class;
#else
    __unsafe_unretained Class super_class;
#endif
    /* super_class is the first class to search */
};

objc_msgSendSuper方法中,我们会从父类的方法列表开始查找selector,找到后以objc->receiver去调用父类的这个selector。注意,最后的调用者是objc->receiver,而不是super_class

那么objc_msgSendSuper最后就转变成

// 注意这里是从父类开始msgSend,而不是从本类开始,谢谢@Josscii 和他同事共同指点出此处描述的不妥。
objc_msgSend(objc_super->receiver, @selector(class))

/// Specifies an instance of a class.  这是类的一个实例
    __unsafe_unretained id receiver;   


// 由于是实例调用,所以是减号方法
- (Class)class {
    return object_getClass(self);
}

由于找到了父类NSObject里面的class方法的IMP,又因为传入的入参objc_super->receiver = selfself就是son,调用class,所以父类的方法class执行IMP之后,输出还是son,最后输出两个都一样,都是输出son

四、消息发送与转发

这部分内容之前已经学的十分详细了,可以直接看之前写的博客
【iOS】消息流程分析

五、Runtime应用场景

同时我们讲完了Runtime,我们自然要知道如何应用Runtime,我们来看一下Runtime的一些应用

  • (1) 实现多继承Multiple Inheritance
  • (2) Method Swizzling
  • (3) Aspect Oriented Programming
  • (4) Isa Swizzling
  • (5) Associated Object关联对象
  • (6) 动态的增加方法
  • (7) NSCoding的自动归档和自动解档
  • (8) 字典和模型互相转换

其中大多数应用之前博客都有讲大家可以自行查找,同时Isa Swizzling对应的应用是KVO的原理,至于字典模型相互转换之后在学习JsonModel源码中会讲

参考博客:
神经病院 Objective-C Runtime 入院第一天—— isa 和 Class神经病院 Objective-C Runtime 入院第一天—— isa 和 Class
深入解析 ObjC 中方法的结构
深入理解Objective-C:Category

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/678117.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何安装“Whistle客户端”在Windows系统?

一、下载 https://github.com/avwo/whistle-client?tabreadme-ov-file 二、安装 按照正常的应用程序进行安装 三、安装根证书 1、 2、下载证书后&#xff0c;双击证书&#xff0c;根据指引安装证书。证书安装过程&#xff0c;要确保证书存储到受信任的根证书颁发机构下。重…

指纹考勤系统

目录 1.课题研究目的和内容 1.1 课题研究目的 1.2 课题研究内容 2.系统总体方案设计及功能模块介绍 2.1总体方案设计 2.2 ATK-301模块介绍 2.3 TFTLCD显示功能模块介绍 2.4 蜂鸣器报警功能模块介绍 2.5 时钟模块介绍 3.系统硬件设计与实现 3.1 系统硬件电…

深度解析淘宝API接口:功能、限制与最佳实践

在当今日益繁荣的电商领域&#xff0c;淘宝作为中国最大的电子商务平台之一&#xff0c;其API接口为开发者提供了丰富的功能和数据资源。本文将深入解析淘宝API接口的功能、限制&#xff0c;并分享一些最佳实践&#xff0c;帮助开发者更好地理解和使用这些接口。 一、淘宝API接…

迎七一党史知识竞赛答题怎么做

迎七一党史知识竞赛答题&#xff0c;不仅是对于党史知识的检验&#xff0c;更是对于参赛者学习态度和综合能力的考量。在参与这类竞赛时&#xff0c;我们需要做好充分的准备&#xff0c;掌握一定的答题技巧&#xff0c;才能取得好的成绩。 首先&#xff0c;我们要深入了解竞赛…

Exception异常机制详细讲解

目录 一、异常1.1 什么是异常1.2 异常机制的作用1.3 常见的异常2.3 异常的分类1. Error2. Exception① 运行时异常② 编译期异常总结&#xff1a; 二、异常的处理2.1 抛出异常3.1 抛出异常语法3.2 试图捕获异常3.3 捕获异常与抛出异常的区别1. 抛出异常2.捕获异常 三、finally四…

# 全面解剖 消息中间件 RocketMQ-(5)

全面解剖 消息中间件 RocketMQ-&#xff08;5&#xff09; 一、RocketMQ &#xff1a;过滤消息的两种方式 1、Tag 过滤 在大多数情况下&#xff0c;TAG 是一个简单而有用的设计&#xff0c;其可以来选择您想要的消息。 例如: DefaultMoPushconsumer consumer new DefaultM…

新项目来了,JDK 17和JDK 21 该如何选择?

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

FPGA Verilog模块化设计入门篇一

随着电子技术的快速发展&#xff0c;现场可编程门阵列&#xff08;FPGA&#xff09;已成为现代电子系统设计中不可或缺的一部分。FPGA的灵活性、可重构性和高性能使得它成为处理复杂算法、加速数据处理和实现特定功能的理想选择。然而&#xff0c;随着系统复杂性的增加&#xf…

抢拍寄售模式:引领行业潮流的新商业引擎

在如今竞争激烈的市场中&#xff0c;企业的成功不仅依赖于产品和服务的质量&#xff0c;更在于能否把握市场趋势&#xff0c;采用创新的商业模式来推动增长。今天&#xff0c;我将详细介绍一种新兴的商业模式——抢拍寄售模式。这种模式以其独特的业务流程和逻辑&#xff0c;正…

让企业自己掌握数据主权,可道云teamOS让企业数据私有化不再是难题,让企业数据更安全、更可控

越来越多的企业开始意识到&#xff0c;仅仅依赖公共云存储服务可能无法满足其对于数据安全性的高标准要求。 毕竟每年都会有不同程度的数据泄露问题爆出&#xff0c;导致大家在使用企业网盘的时候也总是惴惴不安。一旦数据泄露或被非法获取&#xff0c;企业将面临巨大的经济损…

github将默认分支main改为master

github将默认分支main改为master 1.进入github&#xff0c;点击setting 2.在setting中&#xff0c;选择Respositories&#xff0c;更新默认分支为master 3.选择要更新的项目&#xff0c;在项目中选择setting->general->切换默认分支

PPT设置为本框的默认格式以及固定文本框

调整文本框固定位置 双击文本框之后勾选如下三个位置 设置文本框为默认 在调整好文本框的基本性质后&#xff0c;设置为默认即可

【2024PythonPycharm详细安装教程】

1.打开官网 https://www.python.org/ downloads——>Windows 2.找到 Download Windows installer (64-bit) 下载 3.下载完成双击安装包 勾选Add python.exe to PATH(自动配置系统变量) 点击Install Now&#xff08;默认安装&#xff09; 然后看到安装成功&#xff0…

C# 校验Json格式

错误json&#xff1a;错误值 -2146.379 [{"Key": "surface_heights_average","Value": "-2122.739nm","Description": "surface_heights_average"}, {"Key": "surface_heights_max","V…

python语句执行不了

文章目录 问题解决方案小结 问题 执行命令 python install -r .\requirements.txt出现问题如下&#xff1a; D:\soft\Python310\python.exe: cant open file G:\\Area\\C\\Fay\\install: [Errno 2] No such file or directory (.venv) PS G:\Area\C\Fay> pip install -r .…

微软AI PC革命Windows,游戏竟带头开挂

在购物节到来之际&#xff0c;各个厂家都摩拳擦掌&#xff0c;除了手机那边搞得热火朝天&#xff0c;当然电脑这边也没闲着。 微软就趁着 520 这味儿&#xff0c;召开了自己的 Build 2024 开发者大会&#xff0c;同时还发布了最新一代的 Surface Pro 和 Surface Laptop&#xf…

【ROS】mp4转rosbag

前言 工作中遇到域控中无中间件&#xff0c;无法采用rosbag等中间件的形式同时采集感知结果与视频流&#xff0c;只能通过外接摄像头采集视频流&#xff0c;以及使用can报文或者bin文件形式存储路测数据&#xff1b;导致本地回放时&#xff0c;无法通过视频流观察真实情况&…

年刊文量激增破1000+,但3个月即可录用,这本2区TOP SSCI在你的考虑之列吗

【SciencePub学术】今天小编给大家推荐一本经济金融领域的SSCI&#xff0c;JCR1区&#xff0c;中科院2区TOP&#xff0c;影响因子高达10.4&#xff0c;最重要的是审稿周期较短&#xff0c;对急投的学者较为友好&#xff0c;同领域的作者不妨考虑一下这本期刊&#xff01; Finan…

ERPNext - 用Python打造您的企业资源规划解决方案

文章目录 ERPNext - 用Python打造您的企业资源规划解决方案第一部分&#xff1a;背景第二部分&#xff1a;ERPNext是什么&#xff1f;第三部分&#xff1a;如何安装ERPNext&#xff1f;第四部分&#xff1a;ERPNext基本使用方法第五部分&#xff1a;场景应用示例第六部分&#…

STM32高级控制定时器应用之检测输入PWM周期和占空比

目录 概述 1 PWM 输入模式 1.1 原理介绍 1.2 应用实例 1.3 示例时序图 2 使用STM32Cube配置工程 2.1 软件环境 2.2 配置参数 2.3 生成项目文件 3 功能实现 3.1 PWM占空比函数 3.2 输入捕捉回调函数 4 功能测试 4.1 测试软件框架结构 4.2 实验实现 4.2.1 测试实…