Kafka入门,保姆级教学

文章目录

  • Kafka概念
  • 消息中间件对比
  • 消息中间件对比-选择建议
  • Kafka常用名词介绍
  • Kafka入门
    • 1. Kafka安装配置
    • 2.Kafka生产者与消费者关系
    • 3.Kafka依赖
    • 4.生产者发消息
    • 5.消费者接受消息
    • 6.Kafka高可用性设计
      • 6.1集群
      • Kafka备份机制(Reolication)
    • 7.kafka生产者详解
      • 7.1 发送类型
      • 7.2参数详解
    • 8.kafka消费者详解
      • 8.1消费者组
      • 8.1消息有序性
      • 7.3 提交和偏移量

Kafka概念

  • Kafka 是一种高性能、可扩展的分布式流处理平台,用于处理实时数据流。它最初由 LinkedIn 公司开发,现已成为 Apache 软件基金会的顶级项目。
    以下是 Kafka 的一些重要概念:
  1. Topic(主题):Kafka 使用主题来组织和分类消息。每个主题都是一个具有特定名称的消息流。
  2. Producer(生产者):生产者负责将消息发布到 Kafka 集群的指定主题中。它可以是任何发送消息的应用程序。
  3. Consumer(消费者):消费者订阅一个或多个主题,并从 Kafka 集群中读取消息流。消费者可以按照自己的需求以不同的速率消费消息。
  4. Broker(代理):Kafka 集群中的每个服务器节点称为代理。它们负责接收来自生产者的消息,并将消息存储在磁盘上。代理还处理消费者的请求,将消息传递给消费者。
  5. Partition(分区):每个主题可以分成多个分区。分区是消息在 Kafka 集群中的物理单元,用于水平扩展和提高并发性能。
  6. Offset(偏移量):偏移量是消息在分区中的唯一标识符。消费者可以跟踪其当前位置,以便从指定的偏移量处继续消费消息。
  7. Consumer Group(消费者组):消费者可以组成一个消费者组,共同消费一个主题的消息。每个消费者组中的消费者将共享分区,以实现负载均衡和故障恢复。
  8. Replication(副本):Kafka 使用副本来提供数据冗余和容错性。每个分区可以有多个副本,位于不同的代理上。副本之间通过复制日志保持数据一致性。
  • Kafka 的设计目标是具有高吞吐量、可持久化、分布式存储和实时处理的能力。它被广泛应用于构建实时数据管道、日志收集和分析、事件驱动架构等场景。

消息中间件对比

特性ActiveMQRocketMQRocketMQKafka
开发语言javaerlangjavascala
单击吞吐量万级万级10万级100万级
时效性msusmsms以内
可用性高(主从)高(主从)非常高(分布式)非常高(分布式)
功能特性成熟的产品、较全的文档、各种协议支持好并发能力强、性能好、延迟低MQ功能比较完善,扩展性佳只支持主要的MQ功能,主要应用于大数据领域

消息中间件对比-选择建议

消息中间件建议
Kafka追求高吞吐量,适合产生大量数据的互联网服务的数据收集业务
RocketMQ可靠性要求很高的金融互联网领域,稳定性高,经历了多次阿里双11考验
RabbitMQ性能较好,社区活跃度高,数据量没有那么大,优先选择功能比较完备的RabbitMQ

Kafka常用名词介绍

在这里插入图片描述

  • producer:发布消息的对象称之为主题生产者(Kafka topic producer)
  • topic:Kafka将消息分门别类,每一类的消息称之为一个主题(Topic)
  • consumer:订阅消息并处理发布的消息的对象称之为主题消费者(consumers)
  • broker:已发布的消息保存在一组服务器中,称之为Kafka集群。集群中的每一个服务器都是一个代理(Broker)。 消费者可以订阅一个或多个主题(topic),并从Broker拉数据,从而消费这些已发布的消息。

Kafka入门

1. Kafka安装配置

Kafka对于zookeeper是强依赖,保存kafka相关的节点数据,所以安装Kafka之前必须先安装zookeeper

  • Docker安装zookeeper
  • 下载镜像
    docker pull zookeeper:3.4.14
  • 创建容器
    docker run -d --name zookeeper -p 2181:2181 zookeeper:3.4.14
  • Docker安装kafka
  • 镜像下载:
    docker pull wurstmeister/kafka:2.12-2.3.1
  • 创建容器
docker run -d --name kafka \
--env KAFKA_ADVERTISED_HOST_NAME=192.168.200.130 \
--env KAFKA_ZOOKEEPER_CONNECT=192.168.200.130:2181 \
--env KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.200.130:9092 \
--env KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 \
--env KAFKA_HEAP_OPTS="-Xmx256M -Xms256M" \
--net=host wurstmeister/kafka:2.12-2.3.1

2.Kafka生产者与消费者关系

在这里插入图片描述

  • 生产者发送消息,多个消费者只能有一个消费者接收到消息
  • 生产者发送消息,多个消费者都可以接收到消息

3.Kafka依赖

<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
</dependency>

4.生产者发消息

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Properties;

/**
 * 生产者
 */
public class ProducerQuickStart {

    public static void main(String[] args) {
        //1.kafka的配置信息
        Properties properties = new Properties();
        //kafka的连接地址
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.200.130:9092");
        //发送失败,失败的重试次数
        properties.put(ProducerConfig.RETRIES_CONFIG,5);
        //消息key的序列化器
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        //消息value的序列化器
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");

        //2.生产者对象
        KafkaProducer<String,String> producer = new KafkaProducer<String, String>(properties);

        //封装发送的消息
        ProducerRecord<String,String> record = new ProducerRecord<String, String>("itheima-topic","100001","hello kafka");

        //3.发送消息
        producer.send(record);

        //4.关闭消息通道,必须关闭,否则消息发送不成功
        producer.close();
    }

}

5.消费者接受消息

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

/**
 * 消费者
 */
public class ConsumerQuickStart {

    public static void main(String[] args) {
        //1.添加kafka的配置信息
        Properties properties = new Properties();
        //kafka的连接地址
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.200.130:9092");
        //消费者组
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "group2");
        //消息的反序列化器
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");

        //2.消费者对象
        KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(properties);

        //3.订阅主题
        consumer.subscribe(Collections.singletonList("itheima-topic"));

        //当前线程一直处于监听状态
        while (true) {
            //4.获取消息
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.key());
                System.out.println(consumerRecord.value());
            }
        }

    }

}

总结

  • 生产者发送消息,多个消费者订阅同一个主题,只能有一个消费者收到消息(一对一)
  • 生产者发送消息,多个消费者订阅同一个主题,所有消费者都能收到消息(一对多)

6.Kafka高可用性设计

6.1集群

在这里插入图片描述

  • Kafka 的服务器端由被称为 Broker 的服务进程构成,即一个 Kafka 集群由多个 Broker 组成
  • 这样如果集群中某一台机器宕机,其他机器上的 Broker 也依然能够对外提供服务。这其实就是 Kafka 提供高可用的手段之一

Kafka备份机制(Reolication)

在这里插入图片描述
Kafka 中消息的备份又叫做 副本(Replica)

Kafka 定义了两类副本:

  • 领导者副本(Leader Replica)
  • 追随者副本(Follower Replica)
    同步方式
    在这里插入图片描述
    ISR(in-sync replica)需要同步复制保存的follower
    如果leader失效后,需要选出新的leader,选举的原则如下:

第一:选举时优先从ISR中选定,因为这个列表中follower的数据是与leader同步的

第二:如果ISR列表中的follower都不行了,就只能从其他follower中选取

极端情况,就是所有副本都失效了,这时有两种方案

第一:等待ISR中的一个活过来,选为Leader,数据可靠,但活过来的时间不确定

第二:选择第一个活过来的Replication,不一定是ISR中的,选为leader,以最快速度恢复可用性,但数据不一定完整

7.kafka生产者详解

7.1 发送类型

  • 同步发送
  • 使用send()方法发送,它会返回一个Future对象,调用get()方法进行等待,就可以知道消息是否发送成功
RecordMetadata recordMetadata = producer.send(kvProducerRecord).get();
System.out.println(recordMetadata.offset());
  • 异步发送
    • 调用send()方法,并指定一个回调函数,服务器在返回响应时调用函数
    //异步消息发送
    producer.send(kvProducerRecord, new Callback() {
        @Override
        public void onCompletion(RecordMetadata recordMetadata, Exception e) {
            if(e != null){
                System.out.println("记录异常信息到日志表中");
            }
            System.out.println(recordMetadata.offset());
        }
    });

7.2参数详解

在这里插入图片描述

  • ack
  • 代码配置
/ack配置  消息确认机制
prop.put(ProducerConfig.ACKS_CONFIG,"all");

参数的选择说明

确认机制说明
acks=0生产者在成功写入消息之前不会等待任何来自服务器的响应,消息有丢失的风险,但是速度最快
acks=1(默认值)只要集群首领节点收到消息,生产者就会收到一个来自服务器的成功响应
acks=all只有当所有参与赋值的节点全部收到消息时,生产者才会收到一个来自服务器的成功响应
  • retries在这里插入图片描述

在这里插入图片描述
生产者从服务器收到的错误有可能是临时性错误,在这种情况下,retries参数的值决定了生产者可以重发消息的次数,如果达到这个次数,生产者会放弃重试返回错误,默认情况下,生产者会在每次重试之间等待100ms

  • 代码中配置方式:
//重试次数
prop.put(ProducerConfig.RETRIES_CONFIG,10);
  • 消息压缩
    默认情况下,消息发送时不会被压缩
    代码配置
//数据压缩
prop.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"lz4");
压缩算法说明
snappy占用较少的 CPU, 却能提供较好的性能和相当可观的压缩比, 如果看重性能和网络带宽,建议采用
lz4占用较少的 CPU, 压缩和解压缩速度较快,压缩比也很客观
gzip占用较多的 CPU,但会提供更高的压缩比,网络带宽有限,可以使用这种算法
使用压缩可以降低网络传输开销和存储开销,而这往往是向 Kafka 发送消息的瓶颈所在。

8.kafka消费者详解

8.1消费者组

  • 消费者组(Consumer Group) :指的就是由一个或多个消费者组成的群体
  • 一个发布在Topic上消息被分发给此消费者组中的一个消费者
    • 所有的消费者都在一个组中,那么这就变成了queue模型
    • 所有的消费者都在不同的组中,那么就完全变成了发布-订阅模型

8.1消息有序性

  • 即时消息中的单对单聊天和群聊,保证发送方消息发送顺序与接收方的顺序一致
  • 充值转账两个渠道在同一个时间进行余额变更,短信通知必须要有顺序
    在这里插入图片描述
    topic分区中消息只能由消费者组中的唯一一个消费者处理,所以消息肯定是按照先后顺序进行处理的。但是它也仅仅是保证Topic的一个分区顺序处理,不能保证跨分区的消息先后处理顺序。 所以,如果你想要顺序的处理Topic的所有消息,那就只提供一个分区。

7.3 提交和偏移量

kafka不会像其他JMS队列那样需要得到消费者的确认,消费者可以使用kafka来追踪消息在分区的位置(偏移量)

消费者会往一个叫做_consumer_offset的特殊主题发送消息,消息里包含了每个分区的偏移量。如果消费者发生崩溃或有新的消费者加入群组,就会触发再均衡
在这里插入图片描述
正常的情况
在这里插入图片描述
如果消费者2挂掉以后,会发生再均衡,消费者2负责的分区会被其他消费者进行消费

再均衡后不可避免会出现一些问题

问题一:
在这里插入图片描述
如果提交偏移量小于客户端处理的最后一个消息的偏移量,那么处于两个偏移量之间的消息就会被重复处理。

问题二:
在这里插入图片描述
如果提交的偏移量大于客户端的最后一个消息的偏移量,那么处于两个偏移量之间的消息将会丢失。

  • 自动提交偏移量

当enable.auto.commit被设置为true,提交方式就是让消费者自动提交偏移量,每隔5秒消费者会自动把从poll()方法接收的最大偏移量提交上去

  • 手动提交 ,当enable.auto.commit被设置为false可以有以下三种提交方式
    • 提交当前偏移量(同步提交)
    • 异步提交
    • 同步和异步组合提交

1.提交当前偏移量(同步提交)

enable.auto.commit设置为false,让应用程序决定何时提交偏移量。使用commitSync()提交偏移量,commitSync()将会提交poll返回的最新的偏移量,所以在处理完所有记录后要确保调用了commitSync()方法。否则还是会有消息丢失的风险。

只要没有发生不可恢复的错误,commitSync()方法会一直尝试直至提交成功,如果提交失败也可以记录到错误日志里。


while (true){
    ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
    for (ConsumerRecord<String, String> record : records) {
        System.out.println(record.value());
        System.out.println(record.key());
        try {
            consumer.commitSync();//同步提交当前最新的偏移量
        }catch (CommitFailedException e){
            System.out.println("记录提交失败的异常:"+e);
        }

    }
}

2.异步提交

手动提交有一个缺点,那就是当发起提交调用时应用会阻塞。当然我们可以减少手动提交的频率,但这个会增加消息重复的概率(和自动提交一样)。另外一个解决办法是,使用异步提交的API。

while (true){
    ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
    for (ConsumerRecord<String, String> record : records) {
        System.out.println(record.value());
        System.out.println(record.key());
    }
    consumer.commitAsync(new OffsetCommitCallback() {
        @Override
        public void onComplete(Map<TopicPartition, OffsetAndMetadata> map, Exception e) {
            if(e!=null){
                System.out.println("记录错误的提交偏移量:"+ map+",异常信息"+e);
            }
        }
    });
}

3.同步和异步组合提交
异步提交也有个缺点,那就是如果服务器返回提交失败,异步提交不会进行重试。相比较起来,同步提交会进行重试直到成功或者最后抛出异常给应用。异步提交没有实现重试是因为,如果同时存在多个异步提交,进行重试可能会导致位移覆盖。

举个例子,假如我们发起了一个异步提交commitA,此时的提交位移为2000,随后又发起了一个异步提交commitB且位移为3000;commitA提交失败但commitB提交成功,此时commitA进行重试并成功的话,会将实际上将已经提交的位移从3000回滚到2000,导致消息重复消费。

try {
    while (true){
        ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
        for (ConsumerRecord<String, String> record : records) {
            System.out.println(record.value());
            System.out.println(record.key());
        }
        consumer.commitAsync();
    }
}catch (Exception e){+
    e.printStackTrace();
    System.out.println("记录错误信息:"+e);
}finally {
    try {
        consumer.commitSync();
    }finally {
        consumer.close();
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/67769.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT已闯入学术界,Elsevier推出AI工具

2022年11月&#xff0c;OpenAI公司发布了ChatGPT&#xff0c;这是迄今为止人工智能在现实世界中最重要的应用之一。 当前&#xff0c;互联网搜索引擎中出现了越来越多的人工智能&#xff08;AI&#xff09;聊天机器人&#xff0c;例如谷歌的Bard和微软的Bing&#xff0c;看起来…

Java中VO,BO,PO,DO,DTO的区别

术语解释&#xff1a; VO&#xff08; View Object&#xff09;&#xff1a;显示层对象&#xff0c;通常是Web向模板渲染引擎层传输的对象。 BO&#xff08; Business Object&#xff09;&#xff1a;业务对象。 由Service层输出的封装业务逻辑的对象。 DO&#xff08; Data…

chatGLM 本地部署(windows+linux)

chatGLM算是个相对友好的模型&#xff0c;支持中英文双语的对话交流&#xff0c;清华出的 我的教程无需特别的网络设置&#xff0c;不过部分情况因为国内网络速度慢&#xff0c;需要反复重复 chatGLM github地址 一、硬件需求 N卡8G显存以上&#xff0c;最好16G以上&#xff…

openGauss学习笔记-36 openGauss 高级数据管理-TRUNCATE TABLE语句

文章目录 openGauss学习笔记-36 openGauss 高级数据管理-TRUNCATE TABLE语句36.1 语法格式36.2 参数说明36.3 示例 openGauss学习笔记-36 openGauss 高级数据管理-TRUNCATE TABLE语句 清理表数据&#xff0c;TRUNCATE TABLE用于删除表的数据&#xff0c;但不删除表结构。也可以…

【网络模块】数传DTU(USR-DR150)进行MQTT通讯

文章目录 [TOC] 准备资料软件硬件硬件接线 USR-CAT1 V1.1.4配置 USR-DR15X 是一款有人物联网推出的“口红DTU”&#xff0c;也称为超小体积导轨式DTU&#xff0c;该产品具有体积小巧、集成SIM卡、蓝牙配置、导轨和挂耳安装方便的特征&#xff1b;Cat-1系列产品具备高速率、低延…

C++中的typeid

2023年8月10日&#xff0c;周四下午 目录 概述typeid的用法用法1用法2用法3举例说明 概述 typeid是 C 中的运算符&#xff0c;用于获取表达式或类型的运行时类型信息。 它返回一个std::type_info对象&#xff0c;该对象包含有关类型的信息&#xff0c;例如类型的名称。 type…

Java正确的错误捕获姿态

理论概述 在Java中&#xff0c;捕获异常并且合理地处理或抛出异常是编写健壮和可靠代码的关键部分。但是有时候我们可能会对各种错误的捕获方法有点模棱两可&#xff0c;不知道怎么合适的去使用&#xff0c;这里作为基础知识我们做一个回顾巩固&#xff01;只有正确的开发方法…

Arcgis将一个shp依照属性表导出为多个shp

# -*- coding:utf-8 -*-import arcpy import osfrom arcpy import env#env.workspace "./" #自己设置路径shp rC:\Users\Administrator\Desktop\Lake\xxx.shp #shp文件路径outpath r"C:\Users\Administrator\Desktop\Lake\fenli" #输出结果路径with arc…

IP提取器对比器

需求&#xff1a; 一个html 页面 &#xff0c;有两个输入框 第一个输入框输入文本中包含多个ip&#xff0c;输入的ip是不规则的&#xff0c;需要使用正则表达式提取出 输入文本的ip地址 &#xff0c; 然后在第二个输入框中输入内容&#xff0c;并提取出内容的ip &#xff0c;如…

VR全景在建筑工程行业能起到哪些作用?

在建筑工程领域&#xff0c;数字化技术为行业的发展起到巨大的推动作用&#xff0c;虽然建筑施工行业主要是依赖于工人劳动力和施工设备&#xff0c;但是VR全景在该行业中方方面面都能应用&#xff0c;从设计建模到项目交付&#xff0c;帮助建筑师以及项目方更好的理解每个环节…

Go语言进阶

个人笔记&#xff0c;大量摘自Go语言高级编程、Go|Dave Cheney等 更新 go get -u all 在非go目录运行go install golang.org/x/tools/goplslatest更新go tools&#xff1a;在go目录运行go get -u golang.org/x/tools/...&#xff0c;会更新bin目录下的应用&#xff1b; 运行…

灰度非线性变换之c++实现(qt + 不调包)

本章介绍灰度非线性变换&#xff0c;具体内容包括&#xff1a;对数变换、幂次变换、指数变换。他们的共同特点是使用非线性变换关系式进行图像变换。 1.灰度对数变换 变换公式&#xff1a;y a log(1x) / b&#xff0c;其中&#xff0c;a控制曲线的垂直移量&#xff1b;b为正…

两个状态的马尔可夫链

手动推导如下公式。 证明&#xff1a; 首先将如下矩阵对角化&#xff1a; { 1 − a a b 1 − b } \begin {Bmatrix} 1-a & a \\ b & 1-b \end {Bmatrix} {1−ab​a1−b​} (1)求如下矩阵的特征值&#xff1a; { 1 − a a b 1 − b } { x 1 x 2 } λ { x 1 x 2 }…

数据结构——空间复杂度

3.空间复杂度 空间复杂度也是一个数学表达式&#xff0c;是对一个算法在运行过程中临时占用存储空间大小的量度 。 空间复杂度不是程序占用了多少bytes的空间&#xff0c;因为这个也没太大意义&#xff0c;所以空间复杂度算的是变量的个数。 空间复杂度计算规则基本跟实践复杂…

yolov5代码解读之yolo.py【网络结构】

​这个文件阿对于做模型修改、模型创新有很好大好处。 首先加载一些python库和模块&#xff1a; 如果要执行这段代码&#xff0c;直接在终端输入python yolo.py. yolov5的模型定义和网络搭建都用到了model这个类(也就是以下图片展示的东西)&#xff1a;&#xff08;以前代码没…

EasyPoi导出 导入(带校验)简单示例 EasyExcel

官方文档 : http://doc.wupaas.com/docs/easypoi pom的引入: <!-- easyPoi--><dependency><groupId>cn.afterturn</groupId><artifactId>easypoi-spring-boot-starter</artifactId><version>4.0.0</version></dep…

学习笔记-JVM-工具包(JVM分析工具)

常用工具 JDK工具 ① jps: JVM Process status tool&#xff1a;JVM进程状态工具&#xff0c;查看进程基本信息 ② jstat: JVM statistics monitoring tool &#xff1a; JVM统计监控工具&#xff0c;查看堆&#xff0c;GC详细信息 ③ jinfo&#xff1a;Java Configuration I…

【学习】若依源码(前后端分离版)之 “ 获取角色权限信息及动态路由”

大型纪录片&#xff1a;学习若依源码&#xff08;前后端分离版&#xff09;之 “ 获取角色权限信息及动态路由” 获取用户信息获取路由信息 承接上回&#xff0c;我们发现在login请求后面跟了两个请求&#xff0c;今天我们就来了解一下两个请求的含义。 获取用户信息 先看 ‘…

MySQL及SQL语句(3)

MySQL及SQL语句(3) 文章目录 MySQL及SQL语句(3)一、多表查询1.1 准备sql1.2 笛卡尔积1.3 多表查询的分类&#xff1a;内连接查询外连接查询子查询多表查询练习 二、事务2.1 事务的基本介绍概念操作实例事务提交的两种方式 2.2 事务的四大特征原子性持久性隔离性一致性 2.3 事务…

SpringBoot学习——springboot整合email springboot整合阿里云短信服务

目录 引出springboot整合email配置邮箱导入依赖application.yml配置email业务类测试类 springboot整合阿里云短信服务申请阿里云短信服务测试短信服务获取阿里云的accessKeyspringboot整合阿里云短信导包工具类 总结 引出 1.springboot整合email&#xff0c;qq邮箱&#xff0c;…