redis的配置和使用、redis的数据结构以及缓存遇见的常见问题

目录

1.缓存

2.redis不仅仅可以做缓存,只不过说他的大部分场景,是做缓存。本地缓存重启后缓存里的东西就没有了,但是redis有。

3.redis有几个特性:查询快,但是是放到内存里的〈断电或者重启,数据就丢了),所以他有特定的持久化机制

4.服务器(centos)安装redis

5. redis在springboot中集成

6.使用场景

7.数据结构

        a、String

           b、Hash

        c、List

             d、Set

        e、SortedSet

8.进阶篇:

        ①、Geospatial

        ②、BloomFilter(布隆过滤器)

9.redis的常用配置项

10.缓存常见问题:


1.缓存

        ①、缓存:有缓存时会优先查询缓存中的数据,查询不到再去查询数据库,并且查询完数据库会将查询到的信息放入缓存

        ②、缓存存在的意义:

                a、减轻数据库压力。(数据库的数据是在磁盘里的,而缓存是存在内存里的,内存的读取速率快)就比如说有1000个请求参数是一样的,如果说我不用缓存,就会访问1000次数据库,用缓存,可能就访问一次

                b、提升接口性能(性能不够,缓存来凑)(缓存比硬盘快)

        ③、缓存分为三种:

                a、本地缓存:存在客户端,比如说微信的聊天记录(非常适合用本地缓存)(打开聊天窗口时,肯定不是调接口去查,而是从本地读出来。用本地缓存应该注意安全性:需要把聊天记录做好加密)

                b、服务器缓存:放到jvm堆里面,比如说hashmap,key-value形式

                c、分布式缓存:集群缓存中用的是各自单独的redis,每个缓存单独存储,而分布式缓存中会将这些缓存放到一个redis中

2.redis不仅仅可以做缓存,只不过说他的大部分场景,是做缓存。本地缓存重启后缓存里的东西就没有了,但是redis有。

3.redis有几个特性:查询快,但是是放到内存里的〈断电或者重启,数据就丢了),所以他有特定的持久化机制

        ①、快照形式:定时快照将数据备份到硬盘里。(比较耗费性能)不适合频繁的去备份

        ②、日志形式:(将日志存到硬盘)类似于mysql的binlog.(恢复的时候比较慢,每次恢复需要查询重现很多条日志),不适合长时间的备份 例:aa--bb aa--cc aa--dd aa

        ③、生产环境环境当中,往往两种机制相结合。大约平均每一分钟生成快照,剩下的生成日志,1分钟之后快照删除生成日志

4.服务器(centos)安装redis

        ①、finalshell连接上服务器

        ②、安装docker和redis

  1.  更新yum包:yum -y update
  2. yum remove docker  docker-common docker-selinux docker-engine
  3. yum install -y yum-utils device-mapper-persistent-data lvm2
  4. yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
  5. yum -y install docker-ce-18.03.1.ce
  6. systemctl start docker
  7. docker pull redis:latest
  8.  docker run -d -p 6379:6379 --name="myredis1" redis
  9. docker exec -it myredis1 redis-cli

5. redis在springboot中集成

        ①、添加依赖

(IP+端口号+有密码的加上密码)

         ②、实现

6.使用场景

        ①、在大型的秒杀库存扣减,app首页流量高峰,很容易将传统的关系型数据库(mysql,oracle等)给压垮

        ②、还有很多没必要持久化的数据,比如说短信验证码,点赞数等

        ③、分布式锁

        ④、 分布式缓存(session共享)

7.数据结构

        ①、redis的存储是以key-value的键值对的形式存储的,其中key都是String类型,value常见的就是以下的5种。

        a、String

        字符串类型,可以包含任何数据,最大可以是512MB,内部的实现结构和ArrayList类似,采用内分配冗余的形式,来减少内存的频繁分配(降低CPU压力)

struct SDS {

        // 数组容量

        T capacity;

        // 数组长度

        T len;

        // 特殊标识位

        byte flags;

        // 数组内容

        byte[ ] buf;

}

        即在创建字符串的时候,len 的长度就是capacity,当需要修改时,如果存储容量不够的话,就会进行扩容,当字符串的容量小于1mb时,就会执行加倍扩容,即扩容到2*capacity,当容量大于1MB时,每次多增加1MB。

        常见的指令

set name zhencong --存放字符串键值对

mset name zhencong age 18 --批量存放键值对

SETNX name zhencong --如果不存在key为name,那么就设置value(分布式锁的原理)

get name -- 获取key

mget name age --批量获取key

DEL key -- 删除key

expire key 60 --设置过期时间,单位为秒

INCR (23.890, 0.570, 2.44%) key -- 将key中存储的数字加1

DECR key -- 将key中存储的数字减1

INCRBY key 2 --将key中存储的值都加上2

DECRBY key 2 --将key中存储的值都减去2

        需要注意的是,尽量避免同时操作大批量的key,比如给所有的key设置过期时间,因为redis是单线程的,如果操作耗费太多时间,会造成redis的假死(暂时不对外提供服务)

        使用场景

                i、不需要持久化的数据或者频繁更新的数据,比如验证码,点赞数

                ii、对象缓存:可以通过序列化工具类,来缓存java对象,比如将某个对象序列化为json,需要用的时候再取出来,反序列化。常见的使用方式有mybatis二级缓存,接口级别缓存等等。

                iii、使用setnx来实现分布式锁,(使用分布式锁时一定要设置过期时间,防止不能释放锁,造成死锁)

                iv、可以用incr,decr来实现点赞数

                v、分布式全局id:在一个大型的系统下,如果涉及到分库分表后,mysql 的自增id,肯定满足不了需要,如果用户量不大,可以每次从redis 这里通过自增获取id,但是如果用户量大,每次都拿肯定会给redis造成压力,可以一次取1000个,放本地缓存里,等用完了再去取。

           b、Hash

        是一个key-value的键值对,和java里的hashMap相似,当数据量较小是采用的是ziphash(默认),当数据量较大时采用hashtable。至于什么转换可以在配置文件进行配置。

hash-max-ziplist-entries 512 //配置当field-value超过512时(合起来1024),使用hashtable编码

hash-max-ziplist-value 64 //配置当key的单个field或value长度超过64时,使用hashtable编码

         常用指令

hset hash name zhencong --设置值,

hget hash name -- 获取值

hmset hash name zhencong age 18 --批量设置

hmget hash name age --批量获取

hgetall hash 获取key的所有值

hkeys hash 获取hashmap中所有的key

hvals hash 获取hashmap中所有的value

        应用场景 

                i、可以用于存储系统中对象的数据。

                ii、也可以用于做缓存,来解决数据一致性的问题(不推荐)。

        c、List

        redis的list为quickList(快速链表)即多个ziplist(压缩链表)组合起来的。如图所示:ziplist;当数组容量较小的时候,会开辟一个连续的内存空间,只有当数组容量过多的时候,才会改为quickList,这样做的好处就是,如果采用普通的链表,当我们节点只存int类型的数据,还需要开辟两个指针,连接节点的上一个元素和下一个元素,会比较浪费空间。所以采用了quickList的方式,既能满足快速插入删除性能,又不会出现太大的空间浪费。

        这么做也有缺点,就是当我们的list要变动时,肯定会涉及到内存重新分配和数据拷贝,这个是很影响性能的,list越大,修改元素的代价越大,所以一般我们不会存储过多元素。

        redis的list是按插入顺序排序的,可以添加的一个节点到链表的头部(头插)或者尾部(尾插),是一个双向链表,对两端的操作性能会比较高,对中间节点的操作性能相对来说较差(因为得通过指针对遍历对应的节点)。

           常用指令

rpush myList valu5e1 --向 list 的头部(右边)添加元素

rpush myList value2 value3 --向list的头部(最右边)添加多个元素

lpop myList # 将 list的尾部(最左边)元素取出

lpush myList2 value1 --尾插

        使用场景

        可以实现栈和队列,需要注意的是,push和pop的操作是原子性的,所以操作redis的时候,直接用就行了,不要把list读出来,通过java修改,再放回去,这样不能保证数据一致性。(先读先写或先读后写)

             d、Set

        redis的set和list相似,只不过可以自动去重。(java的set也可以自动去重)。

        当你需要存储一个没有重复数据的列表时就可以选择set,同时set也可以判断某个数据在不在集合里面。

        set的底层结构是一个value为null的哈希表,也就意味着他的时间复杂度为O(1),也就意味着即使数据再多,查找的时间也是一样的。

        使用场景

        可以用来计算多个数据源的交集或并集

        e、SortedSet

        和set很相似,sortedSet是一个有序不重复的列表。SortedSet里面的每个节点都关联了一个权重,用来排序。(集合里的每个节点是唯一的,但是评分却可以是相同的),利用这个特性我们可以利用redis来实现排行榜。也可以很快速的获取到一个区间内的节点。

        SortedSet的底层是hash和跳表(一个很典型的数据机构,牺牲空间来换取时间)。hash的作用是存储每个节点和权重,跳表的作用是用来快速获取一个区间里的节点。

        redis常用的数据机构就是以上五种,还有一些不常用的(加分项)

        使用场景

        直播系统的实时排行榜

8.进阶篇:

        ①、Geospatial

        地理位置的缩写,可以表示一个区域的二维坐标,redis提供了经纬度设置,查询,范围查询,距离查询,经纬度hash等操作。

        使用场景

可以用来计算距离最近的门店

        ②、BloomFilter(布隆过滤器)

        布隆过滤器是一段很长的二进制向量和一系列随机映射函数,用来快速检索一个元素是否在一个集合里。但是他的准确率不是百分之百,有可能判断失误。因此他不适合零失误的场景。

        优点:i,支持海量数据 (19.04, -0.70, -3.55%)场景下,判断元素是否存在。

                   ii,存储空间占用量小,不存储数据本身,存储的是hash值

                   iii,不存储数据本身,可以用来存储加密数据

        缺点:不支持计数,同一个元素可以多次插入,而且效果是相同的。

        使用场景:i、用来解决缓存穿透问题;

                         ii、可以判断用户是否阅读过某篇文章,防止重复推送,比如说抖音。

9.redis的常用配置项

port

端口号,默认6379

bind

主机地址,可以访问redis的ip

timeout

连接空闲多长要关闭连接,表示客户端闲置一段时间后要关闭连接。如果指定为0,就表示连接的时长不限制。这个选项的默认值为0,表示默认不限制连接的空闲时长。

dbfilename

指定保存缓存数据的本地文件名,默认值为dump.rdb。

dir

指定保存缓存数据的本地文件所存放的目录,默认值为安装目录

rdbcompression

指定存储缓存数据至本地文件时是否压缩数据,默认为yes。Redis采用LZF压缩。为了节省CPU时间,可以关闭该选项,但会导致本地文件变得巨大。

requirepass

设置Redis连接密码

slaveof

在主从复制模式下,如果当前节点为Slave(从)节点,就设置为Master(主)节点的IP地址及端口,在Redis启动时自动从Master(主)节点进行数据同步。如果已经是Slave(从)服务器,则会丢掉旧数据集,从新的Master主服务器同步缓存数据。

masterauth

在主从复制模式下,当Master(主)服务器节点设置了密码保护时,Slave(从)服务器用此命令设置连接Master(主)服务器的密码。设置Master服务器节点密码的命令格式为:

10.缓存常见问题:

        ①、什么是缓存穿透,缓存穿透带来的问题,如何解决缓存穿透?

                a、缓存穿透:比如说我的key是数字(123),但是网络攻击者频繁的用字符串(abc)去获取缓存。导致永远无法命中缓存,直接查取的数据库。缓存的意义就是为了减少数据库压力。

                b、解决方法:布隆过滤器

        ②、什么是缓存击穿,缓存击穿带来的问题,如何解决缓存击穿?

                a、缓存击穿:比如说我的官网数据是热点数据,在并发非常高的时候,比如说高考报名的时候,官网数据缓存过期了。这时会直接查询数据库,丢失了缓存的意义

                b、解决方案:一些非常高频的热点数据,不设置过期时间。并且开启定时任务定期查看缓存有没有被删除,如果缓存不存在了,更新缓存。不设置过期时间只能保证redis不会删,但是不能保证其他服务有没有可能删,所以需要开启定时任务,在缓存被别的删除的时候更新缓存。

        ③、什么是缓存雪崩,缓存雪崩带来的问题,如何解决缓存雪崩?

                a、缓存雪崩:大批量的key在同一时刻同时失效,导致请求都打到了数据库

                b、解决方案:key的过期时间做合理的规划,对于高频数据(自己定义的,你觉得这个数据是不是高频的),不设置过期时间

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/67695.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

小研究 - Mysql快速全同步复制技术的设计和应用(三)

Mysql半同步复制技术在高性能的数据管理中被广泛采用,但它在可靠性方面却存在不足.本文对半同步复制技术进行优化,提出了一种快速全同步复制技术,通过对半同步数据复制过程中的事务流程设置、线程资源合理应用、批量日志应用等技术手段&#…

W5100S-EVB-PICO 做TCP Server进行回环测试(六)

前言 上一章我们用W5100S-EVB-PICO开发板做TCP 客户端连接服务器进行数据回环测试,那么本章将用开发板做TCP服务器来进行数据回环测试。 TCP是什么?什么是TCP Server?能干什么? TCP (Transmission Control Protocol) 是一种面向连…

用C语言构建一个数字识别深度神经网络

接上一篇: 用C语言构建一个数字识别卷积神经网络 1. 深度神经网络 按照深度学习的理论,随着神经网络层数的增加,网络拟合复杂问题的能力也会增强,对事物特征的挖掘也会更加深入.这里尝试构建一个5层深度的神经网络&am…

【逗老师的PMP学习笔记】9、项目资源管理

目录 一、规划资源管理1、【关键工具】责任分配矩阵RACI矩阵2、【关键工具】组织理论2.1、马斯洛需求层次理论2.2、麦格雷戈-X-Y理论2.3、赫兹伯格双因素理论 3、【关键输出】资源管理计划4、【关键输出】团队章程 二、估算活动资源1、【关键输入】资源日历 三、获取资源1、【关…

LeetCode_01 精度丢失

1281. 整数的各位积和之差 给你一个整数 n,请你帮忙计算并返回该整数「各位数字之积」与「各位数字之和」的差。 示例 输入:n 234 输出:15 解释: 各位数之积 2 * 3 * 4 24 各位数之和 2 3 4 9 结果 24 - 9 15示例 …

【计算机视觉】干货分享:Segmentation model PyTorch(快速搭建图像分割网络)

一、前言 如何快速搭建图像分割网络? 要手写把backbone ,手写decoder 吗? 介绍一个分割神器,分分钟搭建一个分割网络。 仓库的地址: https://github.com/qubvel/segmentation_models.pytorch该库的主要特点是&#…

【2.2】Java微服务:Hystrix的详解与使用

目录 分布式系统面临问题 Hystrix概念 Hystrix作用 降级 什么是降级 order服务导入Hystrix依赖(简单判断原则:谁调用远程谁加) 启动类添加注解 业务方法添加注解(冒号里填回调方法名,回调方法返回兜底数据&…

沁恒ch32V208处理器开发(二)工程配置

概述 MounRiver Studio在进行任何项目的开发时,为了提高效率,往往需要复用芯片厂家或第三方开发的成熟模块,这些模块通过一个.wvproj文件来进行组织,主要包含: 1)MCU厂家提供的硬件接口文件,包…

Windows使用docker desktop 安装kafka、zookeeper集群

docker-compose安装zookeeper集群 参考文章:http://t.csdn.cn/TtTYI https://blog.csdn.net/u010416101/article/details/122803105?spm1001.2014.3001.5501 准备工作: ​ 在开始新建集群之前,新建好文件夹,用来挂载kafka、z…

设计师常用的6款UI设计工具

在选择UI设计工具时,设计师需要关注UI设计工具的功能。市场上有很多设计UI的工具。既然UI设计工具这么多,设计师应该如何选择UI设计工具?本文盘点了6种流行的UI设计工具,快来看看。 1.即时设计 即时设计是一款免费的在线 UI 设计…

Kubernetes kubectl管理命令使用方法

陈述式资源管理方法(通过命令行) 1.kubernetes 集群管理集群资源的唯一入口是通过相应的方法调用 apiserver 的接口 2.kubectl 是官方的CLI命令行工具,用于与 apiserver 进行通信,将用户在命令行输入的命令,组织并转化…

element-ui表格跨页多选实现

前言 在我们日常项目开发中,经常会有表格跨页多选的需求,接下来让我们用 el-table 示例一步步来实现这个需求。 动手开发 在线体验 https://codesandbox.io/s/priceless-mcclintock-4cp7x3?file/src/App.vue 常规版本 本部分只写了一些重点代码,心急的彦祖可以直接看 性…

使用chatGPT-4 畅聊量子物理学

与chatGPT深入研究起源、基本概念,以及海森堡、德布罗意、薛定谔、玻尔、爱因斯坦和狄拉克如何得出他们的想法和方程。 1965 年,费曼(左)与朱利安施温格(未显示)和朝永信一郎(右)分享…

机器学习深度学习——文本预处理

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——序列模型(NLP启动!) 📚订阅专栏:机器学习&am…

大厂容器云实践之路(二)

3-网易蜂巢的DOCKER实践之路 面临问题 场景分析 如何解决 功能性需求(基础) 第一步 技术支撑公有化 开发流程 场景分析 功能性需求(基础) 非功能性需求(SLA) 第二步 产品技术云端化 开发流程 场景分析…

Maven介绍,部署在eclipse中

目录 一.Maven介绍 1,什么是maven? 2. 为什么maven会在企业中大量使用? 3.没有使用maven的前后区别? 4.maven在Java开发中的实际效果图 二.maven部署在eclipse中 1.下载maven在其官方网址下载(当然实际下载也要根据个人的…

C语言案例 判断是否为回文数-06

题目:随机输入一个5位数,判断它是不是回文数 步骤一:定义程序的目标 编写C程序,随机输入一个5位数,判断它是不是回文数 步骤二:程序设计 原理:即12321是回文数,个位与万位相同&#…

【C++学习手札】new和delete看这一篇就够了!

​ 食用指南:本文在有C基础的情况下食用更佳 🍀本文前置知识: C类 ♈️今日夜电波: Prover—milet 1:21 ━━━━━━️💟──────── 4:01 …

学习C语言第三天 :关系操作符、逻辑操作符

1.关系操作符 C语言用于比较的表达式&#xff0c;称为“关系表达式”里面使用的运算符就称(relationalexpression)&#xff0c;为“关系运算符” (relationaloperator) &#xff0c;主要有下面6个。 > 大于运算符 < 小于运算符 > 大于等于运算符 < 小于等…

JVM基础篇-直接内存

JVM基础篇-直接内存 什么是直接内存? 直接内存( 堆外内存 ) 指的是 Java 应用程序通过直接方式从操作系统中申请的内存,这块内存不属于jvm 传统方式读取文件 首先会从用户态切换到内核态&#xff0c;调用操作系统函数从磁盘读取文件&#xff0c;读取一部分到操作系统缓冲区…