电力电子功率模块在工程应用中测温NTC的使用

电力电子功率模块在工程应用中测温NTC的使用

  • 1.概述
  • 2.什么是NTC
  • 3.模块内部NTC
    • 3.1 绝缘隔离措施
    • 3.2 NTC热量考虑
  • 4.使用模拟方法测量NTC温度
    • 4.1 分压电阻大小
  • 5.使用数字方法测量NTC温度

1.概述

最近做项目的时候突然被问到一个问题。做实验测温用的NTC到底怎么用?为什么不用PTC?

立创上检索了一下,贴片的NTC很多,贴片的PTC几乎没有。看来,电路板上的NTC应用居多。

在这里插入图片描述
在这里插入图片描述

2.什么是NTC

NTC温度传感器是一种热敏电阻、探头,其原理为:电阻值随着温度上升而迅速下降。其通常由2或3种金属氧化物组成, 混合在类似流体的粘土中,并在高温炉内锻烧成致密的烧结陶瓷。实际尺寸十分灵活,它们可小至0.010英寸或很小的直径。最大尺寸几乎没有限制,但通常适用半英寸以下。

常见的NTC规格:

在这里插入图片描述

3.模块内部NTC

我以功率模块IGBT内部NTC为例(电机控制器领域)。

电力电子器件最重要的参数之一就是芯片的温度。然而对温度的直接测量需要一个装在芯片上甚至与作为芯片一部分的传感器。这会减小芯片通过电流能力的有效区域。
测量芯片温度另一个可行的办法是通过一个热模型并以测量的基板温度作为基础数据开始计算结温。在很多电力电子模块中,热敏电阻,也称作NTC,被集成在内部当作一个温度传感器,以便方便精确测量温度装置的设计。

NTC安装在硅芯片的附近,以得到一个比较紧密的热耦合。根据模块的不同,NTC或者与硅芯片安装在同一块DCB上,或者安装在单独的基片上:
在这里插入图片描述

3.1 绝缘隔离措施

在NTC所在位置之外,覆盖着填充模块的隔离胶。在任何经常性工作条件下,这是满足隔离要求的。为确保绝缘隔离质量,在生产过程中要根据EN50187标准进行绝缘测试。这一标准定义了几种不同等级的绝缘隔离标准,分为功能型和加强型的绝缘标准。加强型的绝缘标准,常常用于逆变器中,被定义为:

一个在机械和电气方面的改进型基本绝缘,使得装置对电冲击的防护等级与双重绝缘隔离相同。它可能采用一层或者多层的绝缘材料。

由于高压和NTC之间击穿产生导电通路引起的失效可能性是存在的,导电通路路径如图1所示:

在这里插入图片描述
这个导电通路本身可以由故障发生时连接线改变位置连接而成,或者击穿时的电弧产生的等离子路径形成。

出于这个原因,内部NTC的绝缘只是满足功能性的绝缘,因此为了加强隔离,需要加入外部的额外隔离屏障。

近些年来,有一些方法证明是可行的。有:
 把高压作为设计控制电路的参考电位,并在人有接触的部分和整个控制电路间加入绝缘隔离屏障层。
 使用带有内部隔离的运放来检测NTC两端的电压。
 使用隔离器件如磁或光耦将NTC的电压转化为能够传输到控制电路的数字信号。

虽然在一些应用场合,功能性的NTC隔离就足够了,但还是应该充分仔细检查以确保满足一些特殊设计的所有绝缘隔离要求。

3.2 NTC热量考虑

安装在DCB上的NTC在模块内部的热量流动路径简要示意图,如图2所示:
在这里插入图片描述

芯片产生的大部分热量是经过散热片直接散热到到环境中。此外,热量是经过DCB材料和基板导热到NTC所在的位置。

由于热量并不是瞬间就能流动的,NTC测量的只是模块稳态工作时的温度。因为相关的时间常数太小,如由短路产生的瞬时温度现象就没办法监测到。

作为一个很重要的结论,NTC不能用于短路保护!

热量情况和热量可能传导路径的等效热路图如图3所示:

在这里插入图片描述
从概论中可以得出两个结论:

  1. 由于连接芯片结到NTC的路径Rt h JNTC上有温度的降低,热敏电阻的温度TNTC会比结温TJun ct io n来得低。
  2. 由于同样的原因,NTC的温度会比散热片上测量的温度来得高。

由经验可知,对于电力电子设备,散热片的温度和NTC的温度的差值约等于10K的温度水平。
如果有些温度值没办法测量,它们需要由Rth-chain值计算得到,则必须知道Rth-chain的值。对于一个给定的模块,IGBT和二极管的相应的RthJC 和RthCH可以从数据手册得到。

在这里插入图片描述
由这些数值可以计算热量的情况:

在这里插入图片描述

4.使用模拟方法测量NTC温度

这一方法是基于把热传感器NTC作为分压电路的一部分来实现的,如图6所示:

在这里插入图片描述
数据手册中用两种不同方式给出了NTC的热特性。根据NTC的热特性图的公式R = f(ϑ)的参数就能采用解析方法近似得到NTC的热特性图。有用的数学表达式为:

在这里插入图片描述
如果对于一个较小范围的温度,为了更精确的计算,数据手册还提供了B25/50 和B25/80的值。
由测量得到的电压UR,则实际电阻R(ϑ) 可以计算为:

在这里插入图片描述

4.1 分压电阻大小

R1 应当认真选择以得到一个合适的数值。如果选得太小,流过NTC的电流会导致功率损耗,并反过来加热器件从而改变了测量结果。另一方面,如果R1选择得太大,测量得的电压太小,反过来会降低测量精度。

为了将这一电流的影响减小到最小,查看温度是十分有助的。NTC的热导率为145K/W。
如果允许温度有1K的精度差,那么NTC内部的功率损耗不能超过Pmax=6.9mW。假设需要测量的值达到 100°C,NTC的阻值会达到R100=493Ω.

由此可知,电流最大值可以计算为:

在这里插入图片描述
对于U1=5V的供电电压和3mA的电流限定值,电阻R1为:

在这里插入图片描述
由于没有这样的标称电阻,因此可以选择910Ω的阻值,使得 Imax=3.56mA;可以选择任何使得电流I<4mA的电阻,因为1K温度的偏差是允许的。

5.使用数字方法测量NTC温度

除了用分压电路的方法,NTC的阻值随温度的变化也可用于影响R-C电路的时间常数,基本电路图如图7所示:

在这里插入图片描述
通过电阻 R11和R12设置比较器的阈值来改变比较器的输出。输出信号Uout 用于触发晶体管Q1来使电容放电。 由于电容的充电是受NTC的电阻R(ϑ)控制的, Uout是一个频率为fout=g(ϑ)的脉冲。

为了从Uout得到实际的温度值,对于周期固定的脉冲只需要计算脉冲数的数量就可以了。
由脉冲数就可以得到温度值;脉冲数与温度的关系图可以用解析方法或用对照表通过在两个最近的值中由插值方法求出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/676426.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【西瓜书】5.神经网络

1.概念 有监督学习正向传播&#xff1a;输入样本---输入层---各隐层---输出层反向传播&#xff1a;误差以某种形式在通过隐层向输入层逐层反转&#xff0c;并将误差分摊给各层的所有单元&#xff0c;以用于修正各层的权值激活函数&#xff1a;也叫阶跃函数&#xff0c;目的是引…

特征工程技巧——字符串编码成数字序列

这段时间在参加比赛&#xff0c;发现有一些比赛上公开的代码&#xff0c;其中的数据预处理步骤值得我们参考。 平常我们见到的都是数据预处理&#xff0c;现在我们来讲一下特征工程跟数据预处理的区别。 数据预处理是指对原始数据进行清洗、转换、缩放等操作&#xff0c;以便为…

深入理解序列化:概念、应用与技术

在计算机科学中&#xff0c;序列化&#xff08;Serialization&#xff09;是指将数据结构或对象状态转换为可存储或传输的格式的过程。这个过程允许将数据保存到文件、内存缓冲区&#xff0c;或通过网络传输至其他计算机环境&#xff0c;不受原始程序语言的限制。相对地&#x…

MySQL(三) - 基础操作

一、索引 由于我们在使用数据库的时候&#xff0c;大部分操作的都是查询操作&#xff0c;但是我们每一次进行查询都需要遍历一遍表中所有数据&#xff0c;这会花费O(n)的时间&#xff0c;因此数据引入了“索引” 也就是在底层使用了数据结构来进行优化查询的操作&#xff0c;但…

C++ Primer 第五版 第15章 面向对象程序设计

面向对象程序设计基于三个基本概念&#xff1a;数据抽象、继承和动态绑定。 继承和动态绑定对编写程序有两方面的影响&#xff1a;一是我们可以更容易地定义与其他类相似但不完全相同的新类&#xff1b;二是在使用这些彼此相似的类编写程序时&#xff0c;我们可以在一定程度上…

java面试题及答案2024,java2024最新面试题及答案(之一)

发现网上很多Java面试题都没有答案&#xff0c;所以花了很长时间搜集整理出来了这套Java面试题大全&#xff0c;希望对大家有帮助哈~ 本套Java面试题大全&#xff0c;全的不能再全&#xff0c;哈哈~ 一、Java 基础 1. JDK 和 JRE 有什么区别&#xff1f; JDK&#xff1a;Ja…

day26-单元测试

1. 单元测试Junit 1.1 什么是单元测试&#xff1f;&#xff08;掌握&#xff09; 1.2 Junit的特点&#xff1f;&#xff08;掌握&#xff09; 1.3 基本用法&#xff1a;&#xff08;掌握&#xff09; 实际开发中单元测试的使用方式&#xff08;掌握&#xff09; public class …

开源利器AnythingLLM:你的私人ChatGPT构建利器,支持主流多种大模型

开源利器AnythingLLM&#xff1a;你的私人ChatGPT构建利器&#xff0c;支持主流多种大模型 博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备…

阿里云服务器接入百度云防护后显示502原因

最近&#xff0c;发现很多使用了阿里云服务器的网站出现502的情况 经百度云防护技术排查发现阿里云机房对百度云防护的IP进行了拦截&#xff0c;原因近期可能是百度云防护的IP请求过于频繁&#xff0c;导致阿里云机房策略把百度云的IP当成了攻击IP。 解决办法是提交工单让阿里…

ProxySQL + MySQL MGR 实现读写分离实战

文章目录 前言1、ProxySQL 介绍1.1、ProxySQL 如何工作1.2、ProxySQL 工作原理 2、ProxySQL 安装与读写分离实战2.1、ProxySQL 安装2.2、读写分离配置2.3、读写分离实战2.4、SpringBoot 整合 前言 该文章实践之前&#xff0c;需要搭建MySQL MGR集群&#xff0c;关于 MySQL MGR…

企业高性能WEB服务器--nginx(持续更新参数)

目录 1、nginx介绍 2、nginx web服务 3、配置nginx服务 3.1、软件安装 3.2、介绍配置文件 3.2.1、mine.types文件 3.2.2、nginx.conf文件 worker_processes参数 events 块 worker_connections&#xff1a; -- 一个工作者可以处理的最大连接数 http 块 server块&#xff1a; 3.…

LINUX系统编程:信号(1)

目录 什么是信号&#xff1f; 为什要有信号呢&#xff1f; 进程接受信号的过程 1.信号的产生 1.1kill命令产生信号 1.2键盘产生信号 1.3系统调用接口 1.3.1killl() 1.3.2raise() 1.3.3abort() 1.4软件条件 1.5异常 1.6对各种情况产生信号的理解 1.6.1kill命令 1…

基于网关的ip频繁访问web限制

一、前言 外部ip对某一个web进行频繁访问&#xff0c;有可能是对web进行攻击&#xff0c;现在提供一种基于网关的ip频繁访问web限制策略&#xff0c;犹如带刀侍卫&#xff0c;审查异常身份人员。如发现异常或者暴力闯关者&#xff0c;即可进行识别管制。 二、基于网关的ip频繁访…

时序预测 | Matlab灰色-马尔科夫预测

目录 预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab灰色-马尔科夫预测 灰色马尔科夫预测&#xff08;Grey-Markov Prediction&#xff09;是一种用于时间序列预测的方法&#xff0c;它结合了灰色系统理论和马尔科夫链模型。灰色系统理论是一种非参数化的预测方法…

必看!硬核科普!什么是冻干?可以当主食喂的猫咪冻干分享

冻干猫粮作为近年来备受推崇的高品质选择&#xff0c;吸引了越来越多养猫人的目光。有着丰富养猫经验的我&#xff0c;早已开始采用冻干喂养。新手养猫的人可能会对冻干猫粮感到陌生&#xff0c;并产生疑问&#xff1a;这到底是什么&#xff1f;猫咪冻干可以天天喂吗&#xff1…

重新定义你的上网体验,微软WowTab助你一臂之力!

大家好&#xff0c;我是 Java陈序员。 浏览器是我们日常生活工作中必备的工具软件&#xff0c;使用非常频繁。 目前很多浏览器的新标签页虽然说功能齐全&#xff0c;但是充斥着广告和各种无效的信息&#xff0c;十分影响体验&#xff01; 今天&#xff0c;给大家安利一个浏览…

react 中使用 swiper

最近项目中需要用到轮播图&#xff0c;我立马想起了 swiper &#xff0c;那么本文就来带大家体验一下如何在 React 中使用这个插件&#xff0c;使用的是 函数组 hooks 的形式。 需求非常简单&#xff0c;就是一个可以自动播放、点击切换的轮播图&#xff08;跑马灯&#xff0…

基于jeecgboot-vue3的Flowable流程-待办任务(二)

因为这个项目license问题无法开源&#xff0c;更多技术支持与服务请加入我的知识星球。 接下来讲待办的流程处理 1、根据这个vue3新的框架&#xff0c;按钮代码如下&#xff1a; /*** 操作栏*/function getTableAction(record) {return [{label: 处理,onClick: handleProcess…

洗地机品牌哪个牌子好?避坑必读精析4大热门品牌优缺点

科技越发达&#xff0c;生活就越便捷。以打扫卫生为例&#xff0c;越来越多的人放弃了传统的扫把和拖把&#xff0c;转而选择更轻松的清洁家电&#xff0c;比如洗地机。洗地机不仅高效&#xff0c;还具有智能化设计&#xff0c;可以让清洁变得轻松。它强大的吸尘功能能够轻松应…

水位雨量监测站解析

水位雨量监测站是一种集水位和雨量监测功能于一体的重要气象和水文监测设备。其设计和功能旨在实时、准确地监测和记录河流水位、降雨量等关键数据&#xff0c;为气象、水文、环保等领域提供重要的信息支持。以下是关于水位雨量监测站的详细扩写&#xff1a; 系统组成 水位雨…