C语言:(动态内存管理)


目录

动态内存有什么用呢

malloc函数

开辟失败示范

free函数

calloc函数

realloc函数

当然realooc也可以开辟空间

常⻅的动态内存的错误

 对NULL指针的解引⽤操作

对动态内存开辟的空间越界访问

对⾮动态开辟内存使⽤free释放

使⽤free释放⼀块动态开辟内存的⼀部分

对同一块动态内存空间多次释放

动态内存开辟的空间忘记释放(内存泄露)

动态内存的笔试题分析

题目1

题目2

题目3

题目4

柔性数组

柔性数组的特点:

第一种代码

第二种代码

C/C++程序内存分配的⼏个区域:


动态内存有什么用呢

int main()
{
	int a;//在栈空间开辟4个字节
	int arr[10] = { 0 };//在栈空间开辟10个字节的连续空间
}

上面这种开辟空间有2个缺点

1.空间开辟的大小是固定的。

2.数组在申明的时候,必须指定数组的⻓度,数组空间一旦确定了大小就不能调整

但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间⼤⼩在程序运⾏的时候才能知
道,那数组的编译时开辟空间的⽅式就不能满⾜了。
C语⾔引⼊了动态内存开辟,让程序员⾃⼰可以申请和释放空间,就⽐较灵活了。


malloc函数

开辟空间函数需要的头文件

#include<stdlib.h>

内存开辟的空间都是在堆区上的

C语⾔提供了⼀个动态内存开辟的函数:

void* malloc(size_t size);

这个函数向内存申请⼀块连续可⽤的空间,并返回指向这块空间的指针。

如果开辟成功,则返回⼀个指向开辟好空间的指针。
如果开辟失败,则返回⼀个 NULL 指针,因此malloc的返回值⼀定要做检查。
返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使⽤的时候使⽤者⾃
⼰来决定。
如果参数 size 为0,malloc的⾏为是标准是未定义的,取决于编译器。

mallo申请的空间和数组申请的空间有什么区别呢?

1.开辟的空间可以调整大小

2.开辟的位置不一样

int main()
{
	//申请10个整行的空间
	int* p = (int*)malloc(10*sizeof(int));
	//判断p
	if (p == NULL)
	{
		//是NULL就申请失败
		//打印报错信息
		perror("malloc");
		return 1;
	}
	//下面就是使用开辟的40字节
	
	//循环赋值
	for (int i = 0; i < 10; i++)
	{
		//p从0地址开始赋值,i从1开始
		*(p + i) = i + 1;
	}
}

开辟失败示范


free函数

malloc和free都声明在 stdlib.h 头⽂件中。

C语⾔提供了另外⼀个函数free,专⻔是⽤来做动态内存的释放和回收的,函数原型如下:

void free(void* ptr);

free是用来释放动态开辟的内存。

如果参数 ptr 指向的空间不是动态开辟的,那free函数的⾏为是未定义的。

如果参数 ptr 是NULL指针,则函数什么事都不做。

//释放开辟的空间
	free(p);
	//p指向了被释放的空间,会变成野指针
	//所以需要搞成空指针 NULL
	p = NULL;

如果开辟的空间不释放的话,程序结束会被操作系统回收

但是程序还没结束前会浪费很多内存空间

free只能释放动态内存开辟的空间

malloc和free最好成对使用


calloc函数

C语⾔还提供了⼀个函数叫 calloc , calloc 函数也⽤来动态内存分配。原型如下:

void* calloc(size_t num,size_t size);

1.函数的功能是为 num 个⼤⼩为 size 的元素开辟⼀块空间,并且把空间的每个字节初始化为0。
2.与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0。

calloc函数是已经算好的,而malloc需要算

int* p = (int*) malloc(10 * sizeof(int));
int* p = (int*)calloc(10, sizeof(int));

这2个有什么区别呢,malloc不会初始化,而calloc会初始化为全0

如果不想初始化用malloc,想初始化用calloc


malloc不会初始化


而calloc会初始化为全0


realloc函数

realloc函数的出现让动态内存管理更加灵活。

realloc可以调整内存地址。

有时会我们发现过去申请的空间太⼩了,有时候我们⼜会觉得申请的空间过⼤了,那为了合理的时
候内存,我们⼀定会对内存的⼤⼩做灵活的调整。那 realloc 函数就可以做到对动态开辟内存⼤
⼩的调整。

void* realloc(void* ptr,size_t size);

ptr 是要调整的内存地址

size  调整之后新⼤⼩
返回值为调整之后的内存起始位置。
这个函数调整原内存空间⼤⼩的基础上,还会将原来内存中的数据移动到 新 的空间。
realloc在调整内存空间的是存在两种情况:

情况1:原有空间之后有⾜够⼤的空间?
情况2:原有空间之后没有⾜够⼤的空间?

情况1:当是情况1 的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发⽣变化。

情况2:当是情况2 的时候,原有空间之后没有⾜够多的空间时,扩展的⽅法是:在堆空间上另找⼀个合适⼤⼩
的连续空间来使⽤。这样函数返回的是⼀个新的内存地址。

realloc函数第一个必须是开辟空间的起始地址,第二个是调整的要调整多少个整行

int main()
{
	//申请10个整行的空间
	int* p = (int*)calloc(10, sizeof(int));
	//判断p
	if (p == NULL)
	{
		//申请失败报错
		perror("calloc");
		return 1;
	}
	//所以空间
	for (int i = 0; i < 10; i++)
	{
		printf("%d ", p[i]);
	}

    //调整空间—希望变成20个整行的空间
	//realloc函数第一个必须是开辟空间的起始地址,第二个是调整的要调整多少个整行
	int* ret = (int*)realloc(p, 20 * sizeof(int));
	//要判断是不是NULL,如果不判断,又等于NULL,则会把旧空间的数据全部赋值空
	if (ret != NULL)
	{
		//把新空间的地址赋值给p
		p = ret;
	}
	//使用
	//.....
	
	
	//释放
	free(p);
	p = NULL;

	return 0;

}
当然realooc也可以开辟空间

realloc(NULL,40)等价于malloc(40)

int main()
{
	int*p=(int*)realloc(NULL,40);//==malloc(40)
	if (p == NULL)
	{

	}
	return 0;
}

常⻅的动态内存的错误

 对NULL指针的解引⽤操作

p如果是NULL就是对NULL解引⽤,这样是错误的

int main()
{
    int* p = (int*)malloc(10 * sizeof(int));
    //使用
     for (int i = 0; i < 10; i++)
    {
        //如果是NULL就是对NULL解引⽤
        p[i] = i;//这个代码相当于 *(p+i)
    }
    free(p);
    p = NULL;

    return 0;
}

我们需要进行判断是不是NULL,这样就可以避免对NULL指针的解引⽤操作

int main()
{
    int* p = (int*)malloc(10 * sizeof(int));
    //进行判断是不是空指针
    if (p == NULL)
    {
        //是就报错
        perror(malloc);
        return 1;
    }
    //使用
    for (int i = 0; i < 10; i++)
    {
        //如果是NULL就是对NULL解引⽤
        p[i] = i;//这个代码相当于 *(p+i)
    }
    free(p);
    p = NULL;

    return 0;
}

对动态内存开辟的空间越界访问

我们可以看到只开辟了10个整行的空间,循环访问40个整行,造成了越界访问

int main()
{
    int* p = (int*)malloc(10 * sizeof(int));
    if (p == NULL)
    {
        perror(malloc);
        return 1;
    }
    //使用
    for (int i = 0; i < 40; i++)
    {
        p[i] = i;
    }
    free(p);
    p = NULL;

    return 0;
}

对⾮动态开辟内存使⽤free释放

free对⾮动态开辟内存,会报错

int main()
{
	int a = 10;
	int* p = &a;
	//...

	free(p);
	p = NULL;
}

使⽤free释放⼀块动态开辟内存的⼀部分

为什么会报错呢,因为free释放空间是从首地址开始释放的

当p加到10了,p就已经不是首地址了,就无法释放空间了

我们可以创建一个新的指针变量来加。

int main()
{
    int* p = (int*)malloc(10 * sizeof(int));
    if (p == NULL)
    {
        perror(malloc);
        return 1;
    }
    //使用
    for (int i = 0; i < 10; i++)
    {
        *p = i;
        p++;
    }
    //释放动态内存
    free(p);
    p = NULL;

    return 0;
}

对同一块动态内存空间多次释放

当第一个free释放空间然后把p赋值NULL

第二个free释放空间,释放的是空指针当然是没有问题的

当第一个free释放空间没有把p赋值为NULL

第二个free释放的就是野指针了,就会报错了

所以把p赋值为NULL还是有必要的

int main()
{
    int* p = (int*)malloc(10 * sizeof(int));
    if (p == NULL)
    {
        perror(malloc);
        return 1;
    }
    //使用
    free(p);

    //....

    free(p);
    p = NULL;

    return 0;
}

动态内存开辟的空间忘记释放(内存泄露)

当在函数里开辟了100个字节的空间,a等于1提前返回了,没有释放空间

后面还有很多代码,以后就没办法释放了,就导致内存泄露了

忘记释放不再使⽤的动态开辟的空间会造成内存泄漏。
切记:动态开辟的空间⼀定要释放,并且正确释放。

void add()
{
	int a = 1;
	int* p = (int*)malloc(100);

	if (p == NULL)
	{
		return;
	}

	if (a == 1)
	{
		return 1;
	}

	free(p);
	p = NULL;

}
int main()
{
	add();
	//假设后面还有很多代码
	return 0;
}

动态内存的笔试题分析

题目1

void GetMemory(char* p)
{
	p = (char*)malloc(100);
}

void Test(void)
{
	char* str = NULL;
	GetMemory(str);
	strcpy(str, "hello world");
	printf(str);
}

int main()
{
	Test();
	return 0;
}

1.把字符串放到str相当于对NULL解引⽤操作,程序会崩溃。
2.存在内存泄露。

解决办法

就是返回p的地址,然后释放开辟的内存

char* GetMemory()
{
	char*p = (char*)malloc(100);
	return p;
}

void Test(void)
{
	char* str = NULL;
	str = GetMemory();
	strcpy(str, "hello world");
	printf(str);
	free(str);
	str = NULL;
}

int main()
{
	Test();
	return 0;
}

题目2

我们可以发现返回了p的地址,
但是出了这个GetMemory函数外就被操作系统回收了,str就变成野指针了。

这是返回栈空间的问题,进这个函数创建,出这个函数销毁,可以返回变量,但不能返回地址

char* GetMemory(void)
{
	char p[] = "hello world";
	return p;
}
void Test(void)
{
	char* str = NULL;
	str = GetMemory();
	printf(str);
}

int main()
{
	Test();

	return 0;
}

题目3

这个代码存在内存泄露

void GetMemory(char** p, int num)
{
	*p = (char*)malloc(num);
}
void Test(void)
{
	char* str = NULL;
	GetMemory(&str, 100);
	strcpy(str, "hello");
	printf(str);
}

int main()
{
	Test();
	return 0;
}


题目4

void Test(void)
{
	char* str = (char*)malloc(100);
	strcpy(str, "hello");
	free(str);
	if (str != NULL)
	{
		strcpy(str, "world");
		printf(str);
	}
}
int main()
{
	Test();
}

柔性数组

也许你从来没有听说过柔性数组(flexible?array)这个概念,但是它确实是存在的。
C99?中,结构中的最后⼀个元素允许是未知⼤⼩的数组,这就叫做『柔性数组』成员。

柔性数组不是结构体,是结构体里面的一个成员

struct a
{
	int a;
	char b;
	double c;
	int arr[0];//未知大小的数组,arr就是柔性数组的成员
};

有些编译器会报错⽆法编译可以改成:

struct a
{
	int a;
	char b;
	double c;
	int arr[];//未知大小的数组,arr就是柔性数组的成员
};

柔性数组的特点:

1.结构中的柔性数组成员前⾯必须⾄少⼀个其他成员。
2.sizeof 返回的这种结构⼤⼩不包括柔性数组的内存。
3.包含柔性数组成员的结构⽤malloc ()函数进⾏内存的动态分配,并且分配的内存应该⼤于结构的⼤⼩,以适应柔性数组的预期⼤⼩。

第一种代码

下面这个代码我们可以看到sizeof计算结构体大小不包含柔性数组


进行判断是不是NULL,是就报错


结构体的a赋值100,结构体赋值1到20


调整柔性数组srr的空间,把arr的80个字节调整为160字节,然后判断是不是空,是就把p的地址给str


打印空间里的数值,然后释放空间

struct a
{
	int a;
	int arr[];//柔性数组
};
int main()
{
	//                                 4个字节            80个字节
	struct a* p = (struct a*)malloc(sizeof(struct a) + 20 * sizeof(int));
	//判断是不是空
	if (p == NULL)
	{
		perror(malloc);
		return 1;
	}
	//使用
	p->a = 100;
	//arr是数组用下标访问
	for (int i = 0; i < 20; i++)
	{
		p->arr[i] = i+1;
	}
	//调整开辟的空间
	struct a *str = (struct a*)realloc(p, sizeof(struct a) + 40 * sizeof(int));
	if (str != NULL)
	{
		str = p;
		p = NULL;
	}
	else
	{
		return 1;
	}
	//打印
	for (int i = 0; i < 40; i++)
	{
		printf("%d ", str->arr[i]);
	}
	//释放空间
	free(str);
	str = NULL;

	return 0;
}

第二种代码

我们可以发现第二种代码使用了2次malloc函数,上面那第一种只用了一次malloc

这就是柔性数组的特点

struct a
{
	int a;
	int *arr;
};
int main()
{
	//开辟了结构体的空间
	struct a* p = (struct a*)malloc(sizeof(struct a));
	//判断是不是空
	if (p == NULL)
	{
		perror(malloc);
		return 1;
	}
	//开辟一块整行空间
	int* str = (int*)malloc(20 * sizeof(int));
	//不是空
	if (str != NULL)
	{
		//把新开辟的空间的地址赋值给p->arr
		p->arr = str;
	}
	else
	{
		return 1;
	}
	//给a赋值100
	p->a = 100;
	//给arr数组赋值1到20
	for (int i = 0; i < 20; i++)
	{
		p->arr[i] = i + 1;
	}

	//调整空间,调整p->arr的空间,调整为40个整行
	str = (int*)realloc(p->arr, 40 * sizeof(int));
	//判断是不是空
	if (str != NULL)
	{
		p->arr = str;
	}
	else
	{
		return 1;
	}

	//打印
	for (int i = 0;i < 20; i++)
	{
		printf("%d ", p->arr[i]);
	}
	//释放空间
	free(p->arr);
	p->arr = NULL;
	free(p);
	p = NULL;
	return 0;
}

上述 代码1 和 代码2 可以完成同样的功能,但是 ⽅法1 的实现有两个好处:

第⼀个好处是:⽅便内存释放

如果我们的代码是在⼀个给别⼈⽤的函数中,你在⾥⾯做了⼆次内存分配,并把整个结构体返回给⽤⼾。⽤⼾调⽤free可以释放结构体,但是⽤⼾并不知道这个结构体内的成员也需要free,所以你不能指望⽤⼾来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存⼀次性分配好了,并返回给⽤⼾⼀个结构体指针,⽤⼾做⼀次free就可以把所有的内存也给释放掉。

第⼆个好处是:这样有利于访问速度.

连续的内存有益于提⾼访问速度,也有益于减少内存碎⽚。(其实,我个⼈觉得也没多⾼了,反正你跑不了要⽤做偏移量的加法来寻址)


C/C++程序内存分配的⼏个区域:

1. 栈区(stack):在执⾏函数时,函数内局部变量的存储单元都可以在栈上创建,函数执⾏结束时这些存储单元⾃动被释放。栈内存分配运算内置于处理器的指令集中,效率很⾼,但是分配的内,可以看看《函数的栈帧的创建和销毁
存容量有限。栈区主要存放运⾏函数⽽分配的局部变量、函数参数、返回数据、返回地址等。

2. 堆区(heap):⼀般由程序员分配释放,若程序员不释放,程序结束时可能由OS(操作系统)回收。分配⽅式类似于链表。

3. 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。

4.代码段:存放函数体(类成员函数和全局函数)的⼆进制代码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/675991.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

网络安全宣传 | 干货满满,这些网络安全知识请牢记!

随着社会信息化深入发展 互联网对人类文明进步将发挥更大促进作用 但与此同时&#xff0c;互联网领域的问题也日益凸显 网络犯罪、网络监听、网络攻击等时有发生 网络安全与每个人都息息相关 下面 一起来了解网络安全知识吧 网络安全是什么&#xff1f; 网络安全&#x…

2、Tomcat 线程模型详解

2、Tomcat 线程模型详解 Tomcat I/O模型详解Linux I/O模型详解I/O要解决什么问题Linux的I/O模型分类 Tomcat支持的 I/O 模型Tomcat I/O 模型如何选型 网络编程模型Reactor线程模型单 Reactor 单线程单 Reactor 多线程主从 Reactor 多线程 Tomcat NIO实现Tomcat 异步IO实现 Tomc…

重学java 56. Map集合

我们要拥有一定成功的信念 —— 24.6.3 一、双列集合的集合框架 HashMap 1.特点: a.key唯一,value可重复 b.无序 c.无索引 d.线程不安全 e.可以存null键,null值 2.数据结构:哈希表 LinkedHashMap&#xff08;继承HashMap&#xff09; 1.特点: a.key唯一,value可重复 b.有序 c.无…

特征工程技巧—Bert

前段时间在参加比赛&#xff0c;发现有一些比赛上公开的代码&#xff0c;其中的数据预处理步骤值得我们参考。 平常我们见到的都是数据预处理&#xff0c;现在我们来讲一下特征工程跟数据预处理的区别。 数据预处理是指对原始数据进行清洗、转换、缩放等操作&#xff0c;以便为…

Redis中大Key与热Key的解决方案

原文地址&#xff1a;https://mp.weixin.qq.com/s/13p2VCmqC4oc85h37YoBcg 在工作中Redis已经成为必备的一款高性能的缓存数据库&#xff0c;但是在实际的使用过程中&#xff0c;我们常常会遇到两个常见的问题&#xff0c;也就是文章标题所说的大 key与热 key。 一、定义 1.1…

Vulnhub项目:THE PLANETS: MERCURY

1、靶场地址 The Planets: Mercury ~ VulnHubThe Planets: Mercury, made by SirFlash. Download & walkthrough links are available.https://vulnhub.com/entry/the-planets-mercury,544/ 这好像是个系列的&#xff0c;关于星球系列&#xff0c;之前还做过一个地球的&a…

毕业论文word常见问题

0、前言&#xff1a; 这里的问题都是以office办公软件当中的word为例&#xff0c;和WPS没有关系。 1、页眉横线删不掉&#xff1a; 解决方案&#xff1a;进入页眉编辑状态&#xff0c;在开始选项栏中选择页眉字体样式&#xff0c;清除格式。 修改方式如下&#xff1a; 2、…

从网路冲浪到three.js+cannon.js

从网路冲浪开始 网络浏览器的发展史可以追溯到互联网的早期,随着时间的推移,浏览器已经经历了多次重大的变革和发展。 以下是网络浏览器发展史的一个简要概述: 1. 早期的文本浏览器 1990年:蒂姆伯纳斯-李(Tim Berners-Lee)开发了第一个网络浏览器WorldWideWeb(后来更名…

【十二】图解mybatis日志模块之设计模式

图解mybatis日志模块之设计模式 概述 最近经常在思考研发工程师初、中、高级工程师以及系统架构师各个级别的工程师有什么区别&#xff0c;随着年龄增加我们的技术级别也在提升&#xff0c;但是很多人到了高级别反而更加忧虑&#xff0c;因为it行业35岁年龄是个坎这是行业里的共…

【轻松搞定形象照】助你打造编程等级考试、竞赛专属二寸靓照,报名无忧,展现最佳风采!

更多资源请关注纽扣编程微信公众号 ​ 在数字化时代&#xff0c;拍照似乎变得轻而易举&#xff0c;但当我们需要一张特定规格的一寸照片时&#xff0c;事情就变得复杂起来。随着编程等级考试和各类信息学竞赛的日益临近&#xff0c;不少考生都为了一张符合要求的一寸照片而忙…

2.2 OpenCV随手简记(三)

图像的阈值处理定义 &#xff1a;将图像转化为二值图像&#xff08;黑白图&#xff09;, 也可以用于彩色图形&#xff0c;达到夸张的效果 目的&#xff1a;是用来提取图像中的目标物体&#xff0c;将背景和噪声区分开&#xff08;可以近似的认为除了目标全是噪声&#xff09;。…

Capto 标准版【简体中文+Mac 】

Capto 是一套易于使用的屏幕捕捉、视频录制和视频编辑 Capto-capto安装包-安装包https://souurl.cn/DPhBmP 屏幕录制和教程视频制作 记录整个屏幕或选择的任何特定区域。在创建内容丰富的教程视频时选择显示或隐藏光标。无论您做什么&#xff0c;都可以确保获得高质量的视频。…

C# WinForm —— 24 Threading.Timer 组件介绍与使用

1. 简介 System.Threading.Timer 多线程 轻量级 精度高 提供以指定的时间间隔对线程池线程执行方法的机制 和System.Timers.Timer 类似&#xff0c;每隔一段时间触发事件&#xff0c;执行操作(不是由UI线程执行的)&#xff0c;即使事件中执行了比较耗时的操作&#xff0c;也…

教育新基建背景下的光网校园:安徽中澳科技职业学院以太全光网建设之路

作者/安徽中澳科技职业学院 网络中心 刘正峰 安徽中澳科技职业学院隶属于安徽省科技厅,是一所公办高等职业院校。学院在“德厚三分,技高一筹”的校训指引下,坚持“开放性、精品化、技能型”的发展理念,坚持“贴近市场需求、强化实践教学、突出办学特色、培养实用人才”的办学思…

一款高效办公软件及48个快捷键

君子生非异也&#xff0c;善假于物也。 一天&#xff0c;技术同事亲自操刀要撰写一篇公号文档&#xff0c;于是问我需要什么样的排版格式&#xff1f; 我很快甩了一篇《水经注文档排版规范》给对方。 片刻之后&#xff0c;同事觉得这样写文档的效率太低&#xff0c;于是说要…

视频修复工具助你完成高质量的视频作品!

在短视频发展兴起的时代&#xff0c;各种视频层出不穷的出现在了视野中&#xff0c;人们已经从追求数量转向追求质量。内容相同的视频&#xff0c;你视频画质好、质量高的更受大家欢迎&#xff0c;那么如何制作高质量、高清晰度的视频呢&#xff1f;与您分享三个视频修复工具。…

【小白向】微信小程序解密反编译教程

# 前言 最近笔者有做到微信小程序的渗透测试&#xff0c;其中有一个环节就是对微信小程序的反编译进行源码分析&#xff0c;所谓微信小程序反编译&#xff0c;就是将访问的小程序进行反向编译拿到部分源码&#xff0c;然后对源码进行安全审计&#xff0c;分析出其中可能存在的…

Docker基础篇之Docker容器数据卷

文章目录 1. Docker配置容器卷配置时的一个建议2. Docker容器卷目录3. Docker容器卷案例 1. Docker配置容器卷配置时的一个建议 Docker挂载主机目录访问如果出现cannot open directory.:Permission dnied 解决方法&#xff1a;在挂载目录后加一个–privilegedtrue 如果是Cento…

动手学深度学习4.8 数值稳定性和模型初始化-笔记练习(PyTorch)

以下内容为结合李沐老师的课程和教材补充的学习笔记&#xff0c;以及对课后练习的一些思考&#xff0c;自留回顾&#xff0c;也供同学之人交流参考。 本节课程地址&#xff1a;14 数值稳定性 模型初始化和激活函数【动手学深度学习v2】_哔哩哔哩_bilibili 本节教材地址&…

C语言指针用法完善篇

一&#xff0c;指针定义&#xff1a; 1&#xff0c;讲解 指针变量用来记录地址数据&#xff0c;没有记录有效地址的指针变量不可以使用。 定义一个变量A和一个指针B,此时变量A存放在内存1000区间&#xff0c;将变量A赋值给指针变量B&#xff0c;此时指针变量B所接收到的并不是…