一.Pod控制器基本内容
1.定义
Pod控制器,又称之为工作负载(workload),是用于实现管理pod的中间层,确保pod资源符合预期的状态,pod的资源出现故障时,会尝试进行重启,当根据重启策略无效,则会重新新建pod的资源。
2.类型
ReplicationController | 比较原始的pod控制器,已经被废弃,由ReplicaSet替代 |
ReplicaSet | 保证副本数量一直维持在期望值,并支持pod数量扩缩容,镜像版本升级 |
Deployment | 通过控制ReplicaSet来控制Pod,并支持滚动升级、回退版本 |
Horizontal Pod Autoscaler | 可以根据集群负载自动水平调整Pod的数量,实现削峰填谷 |
DaemonSet | 在集群中的指定Node上运行且仅运行一个副本,一般用于守护进程类的任务 |
Job | 它创建出来的pod只要完成任务就立即退出,不需要重启或重建,用于执行一次性任务 |
Cronjob | 它创建的Pod负责周期性任务控制,不需要持续后台运行 |
StatefulSet | 管理有状态应用 |
二.Deployment(Deploy)
为了更好的解决服务编排的问题,kubernetes在V1.2版本开始,引入了Deployment控制器。值得一提的是,这种控制器并不直接管理pod,而是通过管理ReplicaSet来简介管理Pod,即:Deployment管理ReplicaSet,ReplicaSet管理Pod。所以Deployment比ReplicaSet功能更加强大。
Deployment主要功能有下面几个:
- 支持ReplicaSet的所有功能
- 支持发布的停止、继续
- 支持滚动升级和回滚版本
特点:
- 部署无状态应用,只关心数量,不论角色等,称无状态
- 管理Pod和ReplicaSet
- 具有上线部署、副本设定、滚动升级、回滚等功能
- 提供声明式更新,例如只更新一个新的image
1.Deployment资源清单文件
apiVersion: apps/v1 # 版本号
kind: Deployment # 类型
metadata: # 元数据
name: # rs名称
namespace: # 所属命名空间
labels: #标签
controller: deploy
spec: # 详情描述
replicas: 3 # 副本数量
revisionHistoryLimit: 3 # 保留历史版本
paused: false # 暂停部署,默认是false
progressDeadlineSeconds: 600 # 部署超时时间(s),默认是600
strategy: # 策略
type: RollingUpdate # 滚动更新策略
rollingUpdate: # 滚动更新
maxSurge: 30% # 最大额外可以存在的副本数,可以为百分比,也可以为整数
maxUnavailable: 30% # 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数
selector: # 选择器,通过它指定该控制器管理哪些pod
matchLabels: # Labels匹配规则
app: nginx-pod
matchExpressions: # Expressions匹配规则
- {key: app, operator: In, values: [nginx-pod]}
template: # 模板,当副本数量不足时,会根据下面的模板创建pod副本
metadata:
labels:
app: nginx-pod
spec:
containers:
- name: nginx
image: nginx:1.17.1
ports:
- containerPort: 80
2.创建deployment
创建pc-deployment.yaml,内容如下:
# vim nginx-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.15.4
ports:
- containerPort: 80
Replicaset是副本数,回滚就是通过此来实现
创建资源
# kubectl create -f nginx-deployment.yaml
查看创建的pod资源、控制器和副本
# kubectl get pods,deploy,rs
查看历史版本
# kubectl rollout history deployment/nginx-deployment
四.ReplicaSet(RS)
ReplicaSet的主要作用是保证一定数量的pod正常运行,它会持续监听这些Pod的运行状态,一旦Pod发生故障,就会重启或重建。同时它还支持对pod数量的扩缩容和镜像版本的升降级。
部署有状态应用
稳定的持久化存储,即Pod重新调度后还是能访问到相同的持久化数据,基于PVC来实现
稳定的网络标志,即Pod重新调度后其PodName和HostName不变,基于Headless Service(即没有Cluster IP的Service)来实现
有序部署,有序扩展,即Pod是有顺序的,在部署或者扩展的时候要依据定义的顺序依次进行(即从0到N-1,在下一个Pod运行之前所有之前的Pod必须都是Running和Ready状态),基于init containers来实现
有序收缩,有序删除(即从N-1到0)
常见的应用场景:数据库
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
官方文档
apiVersion: v1
kind: Service
metadata:
name: nginx
labels:
app: nginx
spec:
ports:
- port: 80
name: web
clusterIP: None
selector:
app: nginx
---
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: web
spec:
selector:
matchLabels:
app: nginx # has to match .spec.template.metadata.labels
serviceName: "nginx"
replicas: 3 # by default is 1
template:
metadata:
labels:
app: nginx # has to match .spec.selector.matchLabels
spec:
terminationGracePeriodSeconds: 10
containers:
- name: nginx
image: k8s.gcr.io/nginx-slim:0.8
ports:
- containerPort: 80
name: web
volumeMounts:
- name: www
mountPath: /usr/share/nginx/html
volumeClaimTemplates:
- metadata:
name: www
spec:
accessModes: [ "ReadWriteOnce" ]
storageClassName: "my-storage-class"
resources:
requests:
storage: 1Gi
1.组件
(1)Headless Service(无头服务):用于为Pod资源标识符生成可解析的DNS记录。
(2)volumeClaimTemplates(存储卷申请模板):基于静态或动态PV供给方式为Pod资源提供专有的固定存储。
(3)StatefulSet:用于管控Pod资源。
2.为什么要有headless?
在deployment中,每一个pod是没有名称,是随机字符串,是无序的。而statefulset中是要求有序的,每一个pod的名称必须是固定的。当节点挂了,重建之后的标识符是不变的,每一个节点的节点名称是不能改变的。pod名称是作为pod识别的唯一标识符,必须保证其标识符的稳定并且唯一。
为了实现标识符的稳定,这时候就需要一个headless service 解析直达到pod,还需要给pod配置一个唯一的名称。
3.为什么要有volumeClainTemplate?
大部分有状态副本集都会用到持久存储,比如分布式系统来说,由于数据是不一样的,每个节点都需要自己专用的存储节点。而在 deployment中pod模板中创建的存储卷是一个共享的存储卷,多个pod使用同一个存储卷,而statefulset定义中的每一个pod都不能使用同一个存储卷,由此基于pod模板创建pod是不适应的,这就需要引入volumeClainTemplate,当在使用statefulset创建pod时,会自动生成一个PVC,从而请求绑定一个PV,从而有自己专用的存储卷。
4.服务发现
(1)动态性强:Pod会飘到别的node节点
(2)更新发布频繁:互联网思维小步快跑,先实现再优化,老板永远是先上线再慢慢优化,先把idea变成产品挣到钱然后再慢慢一点一点优化
(3)支持自动伸缩:一来大促,肯定是要扩容多个副本
K8S里服务发现的方式---DNS,使K8S集群能够自动关联Service资源的“名称”和“CLUSTER-IP”,从而达到服务被集群自动发现的目的。
5.实现K8S里DNS功能的插件
(1)skyDNS:Kubernetes 1.3之前的版本
(2)kubeDNS:Kubernetes 1.3至Kubernetes 1.11
(3)CoreDNS:Kubernetes 1.11开始至今
6.安装CoreDNS,仅二进制部署环境需要安装CoreDNS
//安装CoreDNS,仅二进制部署环境需要安装CoreDNS
方法一:
下载链接:https://github.com/kubernetes/kubernetes/blob/master/cluster/addons/dns/coredns/coredns.yaml.base
vim transforms2sed.sed
s/__DNS__SERVER__/10.0.0.2/g
s/__DNS__DOMAIN__/cluster.local/g
s/__DNS__MEMORY__LIMIT__/170Mi/g
s/__MACHINE_GENERATED_WARNING__/Warning: This is a file generated from the base underscore template file: coredns.yaml.base/g
sed -f transforms2sed.sed coredns.yaml.base > coredns.yaml
方法二:上传 coredns.yaml 文件
kubectl create -f coredns.yaml
kubectl get pods -n kube-system
7.创建statefulset
(1)创建nginx-serivce.yaml
apiVersion: v1
kind: Service
metadata:
name: nginx-service
labels:
app: nginx
spec:
type: NodePort
ports:
- port: 80
targetPort: 80
selector:
app: nginx
kubectl create -f nginx-service.yaml
kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 5d19h
nginx-service NodePort 10.96.173.115 <none> 80:31756/TCP 10s
(2)创建pod6.yaml
vim pod6.yaml
apiVersion: v1
kind: Pod
metadata:
name: dns-test
spec:
containers:
- name: busybox
image: busybox:1.28.4
args:
- /bin/sh
- -c
- sleep 36000
restartPolicy: Never
kubectl create -f pod6.yaml
(3)解析kubernetes和nginx-service名称
//解析kubernetes和nginx-service名称
kubectl exec -it dns-test sh
/ # nslookup kubernetes
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local
Name: kubernetes
Address 1: 10.96.0.1 kubernetes.default.svc.cluster.local
/ # nslookup nginx-service
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local
Name: nginx-service
Address 1: 10.96.173.115 nginx-service.default.svc.cluster.local
(4)查看statefulset的定义
kubectl explain statefulset
(5)清单定义StatefulSet
如上所述,一个完整的 StatefulSet 控制器由一个 Headless Service、一个 StatefulSet 和一个 volumeClaimTemplate 组成。如下资源清单中的定义:
vim stateful-demo.yaml
apiVersion: v1
kind: Service
metadata:
name: myapp-svc
labels:
app: myapp-svc
spec:
ports:
- port: 80
name: web
clusterIP: None
selector:
app: myapp-pod
---
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: myapp
spec:
serviceName: myapp-svc
replicas: 3
selector:
matchLabels:
app: myapp-pod
template:
metadata:
labels:
app: myapp-pod
spec:
containers:
- name: myapp
image: ikubernetes/myapp:v1
ports:
- containerPort: 80
name: web
volumeMounts:
- name: myappdata
mountPath: /usr/share/nginx/html
volumeClaimTemplates:
- metadata:
name: myappdata
annotations: #动态PV创建时,使用annotations在PVC里声明一个StorageClass对象的标识进行关联
volume.beta.kubernetes.io/storage-class: nfs-client-storageclass
spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 2Gi
由于 StatefulSet 资源依赖于一个实现存在的 Headless 类型的 Service 资源,所以需要先定义一个名为 myapp-svc 的 Headless Service 资源,用于为关联到每个 Pod 资源创建 DNS 资源记录。接着定义了一个名为 myapp 的 StatefulSet 资源,它通过 Pod 模板创建了 3 个 Pod 资源副本,并基于 volumeClaimTemplates 向前面创建的PV进行了请求大小为 2Gi 的专用存储卷。
(6)创建pv
//创建pv
//stor01节点
mkdir -p /data/volumes/v{1,2,3,4,5}
vim /etc/exports
/data/volumes/v1 192.168.80.0/24(rw,no_root_squash)
/data/volumes/v2 192.168.80.0/24(rw,no_root_squash)
/data/volumes/v3 192.168.80.0/24(rw,no_root_squash)
/data/volumes/v4 192.168.80.0/24(rw,no_root_squash)
/data/volumes/v5 192.168.80.0/24(rw,no_root_squash)
systemctl restart rpcbind
systemctl restart nfs
exportfs -arv
showmount -e
(7)定义PV
vim pv-demo.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv001
labels:
name: pv001
spec:
nfs:
path: /data/volumes/v1
server: stor01
accessModes: ["ReadWriteMany","ReadWriteOnce"]
capacity:
storage: 1Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv002
labels:
name: pv002
spec:
nfs:
path: /data/volumes/v2
server: stor01
accessModes: ["ReadWriteOnce"]
capacity:
storage: 2Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv003
labels:
name: pv003
spec:
nfs:
path: /data/volumes/v3
server: stor01
accessModes: ["ReadWriteMany","ReadWriteOnce"]
capacity:
storage: 2Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv004
labels:
name: pv004
spec:
nfs:
path: /data/volumes/v4
server: stor01
accessModes: ["ReadWriteMany","ReadWriteOnce"]
capacity:
storage: 2Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv005
labels:
name: pv005
spec:
nfs:
path: /data/volumes/v5
server: stor01
accessModes: ["ReadWriteMany","ReadWriteOnce"]
capacity:
storage: 2Gi
kubectl apply -f pv-demo.yaml
kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pv001 1Gi RWO,RWX Retain Available 7s
pv002 2Gi RWO Retain Available 7s
pv003 2Gi RWO,RWX Retain Available 7s
pv004 2Gi RWO,RWX Retain Available 7s
pv005 2Gi RWO,RWX Retain Available 7s
(8)创建statefulset
kubectl apply -f stateful-demo.yaml
kubectl get svc #查看创建的无头服务myapp-svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 50d
myapp-svc ClusterIP None <none> 80/TCP 38s
kubectl get sts #查看statefulset
NAME DESIRED CURRENT AGE
myapp 3 3 55s
kubectl get pvc #查看pvc绑定
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
myappdata-myapp-0 Bound pv002 2Gi RWO 1m
myappdata-myapp-1 Bound pv003 2Gi RWO,RWX 1m
myappdata-myapp-2 Bound pv004 2Gi RWO,RWX 1m
kubectl get pv #查看pv绑定
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pv001 1Gi RWO,RWX Retain Available 6m
pv002 2Gi RWO Retain Bound default/myappdata-myapp-0 6m
pv003 2Gi RWO,RWX Retain Bound default/myappdata-myapp-1 6m
pv004 2Gi RWO,RWX Retain Bound default/myappdata-myapp-2 6m
pv005 2Gi RWO,RWX Retain Available 6m
kubectl get pods #查看Pod信息
NAME READY STATUS RESTARTS AGE
myapp-0 1/1 Running 0 2m
myapp-1 1/1 Running 0 2m
myapp-2 1/1 Running 0 2m
kubectl delete -f stateful-demo.yaml
(9)当删除的时候是从myapp-2开始进行删除的,关闭是逆向关闭
//当删除的时候是从myapp-2开始进行删除的,关闭是逆向关闭
kubectl get pods -w
//此时PVC依旧存在的,再重新创建pod时,依旧会重新去绑定原来的pvc
kubectl apply -f stateful-demo.yaml
kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
myappdata-myapp-0 Bound pv002 2Gi RWO 5m
myappdata-myapp-1 Bound pv003 2Gi RWO,RWX 5m
myappdata-myapp-2 Bound pv004 2Gi RWO,RWX
(10)滚动更新
//滚动更新
//StatefulSet 控制器将在 StatefulSet 中删除并重新创建每个 Pod。它将以与 Pod 终止相同的顺序进行(从最大的序数到最小的序数),每次更新一个 Pod。在更新其前身之前,它将等待正在更新的 Pod 状态变成正在运行并就绪。如下操作的滚动更新是按照2-0的顺序更新。
vim stateful-demo.yaml #修改image版本为v2
.....
image: ikubernetes/myapp:v2
....
kubectl apply -f stateful-demo.yaml
kubectl get pods -w #查看滚动更新的过程
NAME READY STATUS RESTARTS AGE
myapp-0 1/1 Running 0 29s
myapp-1 1/1 Running 0 27s
myapp-2 0/1 Terminating 0 26s
myapp-2 0/1 Terminating 0 30s
myapp-2 0/1 Terminating 0 30s
myapp-2 0/1 Pending 0 0s
myapp-2 0/1 Pending 0 0s
myapp-2 0/1 ContainerCreating 0 0s
myapp-2 1/1 Running 0 31s
myapp-1 1/1 Terminating 0 62s
myapp-1 0/1 Terminating 0 63s
myapp-1 0/1 Terminating 0 66s
myapp-1 0/1 Terminating 0 67s
myapp-1 0/1 Pending 0 0s
myapp-1 0/1 Pending 0 0s
myapp-1 0/1 ContainerCreating 0 0s
myapp-1 1/1 Running 0 30s
myapp-0 1/1 Terminating 0 99s
myapp-0 0/1 Terminating 0 100s
myapp-0 0/1 Terminating 0 101s
myapp-0 0/1 Terminating 0 101s
myapp-0 0/1 Pending 0 0s
myapp-0 0/1 Pending 0 0s
myapp-0 0/1 ContainerCreating 0 0s
myapp-0 1/1 Running 0 1s
(11)在创建的每一个Pod中,每一个pod自己的名称都是可以被解析的
//在创建的每一个Pod中,每一个pod自己的名称都是可以被解析的
kubectl exec -it myapp-0 /bin/sh
Name: myapp-0.myapp-svc.default.svc.cluster.local
Address 1: 10.244.2.27 myapp-0.myapp-svc.default.svc.cluster.local
/ # nslookup myapp-1.myapp-svc.default.svc.cluster.local
nslookup: can't resolve '(null)': Name does not resolve
Name: myapp-1.myapp-svc.default.svc.cluster.local
Address 1: 10.244.1.14 myapp-1.myapp-svc.default.svc.cluster.local
/ # nslookup myapp-2.myapp-svc.default.svc.cluster.local
nslookup: can't resolve '(null)': Name does not resolve
Name: myapp-2.myapp-svc.default.svc.cluster.local
Address 1: 10.244.2.26 myapp-2.myapp-svc.default.svc.cluster.local
//从上面的解析,我们可以看到在容器当中可以通过对Pod的名称进行解析到ip。其解析的域名格式如下:
(pod_name).(service_name).(namespace_name).svc.cluster.local