软件杯 题目:基于卷积神经网络的手写字符识别 - 深度学习

文章目录

  • 0 前言
  • 1 简介
  • 2 LeNet-5 模型的介绍
    • 2.1 结构解析
    • 2.2 C1层
    • 2.3 S2层
      • S2层和C3层连接
    • 2.4 F6与C5层
  • 3 写数字识别算法模型的构建
    • 3.1 输入层设计
    • 3.2 激活函数的选取
    • 3.3 卷积层设计
    • 3.4 降采样层
    • 3.5 输出层设计
  • 4 网络模型的总体结构
  • 5 部分实现代码
  • 6 在线手写识别
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于卷积神经网络的手写字符识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 简介

该设计学长使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。

这是学长做的深度学习demo,大家可以用于竞赛课题。

这里学长不会以论文的形式展现,而是以编程实战完成深度学习项目的角度去描述。

项目要求:主要解决的问题是手写数字识别,最终要完成一个识别系统。

设计识别率高的算法,实现快速识别的系统。

2 LeNet-5 模型的介绍

学长实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:

在这里插入图片描述

2.1 结构解析

这是原始的应用于手写数字识别的网络,我认为这也是最简单的深度网络。

LeNet-5不包括输入,一共7层,较低层由卷积层和最大池化层交替构成,更高层则是全连接和高斯连接。

LeNet-5的输入与BP神经网路的不一样。这里假设图像是黑白的,那么LeNet-5的输入是一个32*32的二维矩阵。同
时,输入与下一层并不是全连接的,而是进行稀疏连接。本层每个神经元的输入来自于前一层神经元的局部区域(5×5),卷积核对原始图像卷积的结果加上相应的阈值,得出的结果再经过激活函数处理,输出即形成卷积层(C层)。卷积层中的每个特征映射都各自共享权重和阈值,这样能大大减少训练开销。降采样层(S层)为减少数据量同时保存有用信息,进行亚抽样。

2.2 C1层

第一个卷积层(C1层)由6个特征映射构成,每个特征映射是一个28×28的神经元阵列,其中每个神经元负责从5×5的区域通过卷积滤波器提取局部特征。一般情况下,滤波器数量越多,就会得出越多的特征映射,反映越多的原始图像的特征。本层训练参数共6×(5×5+1)=156个,每个像素点都是由上层5×5=25个像素点和1个阈值连接计算所得,共28×28×156=122304个连接。

2.3 S2层

S2层是对应上述6个特征映射的降采样层(pooling层)。pooling层的实现方法有两种,分别是max-pooling和mean-
pooling,LeNet-5采用的是mean-
pooling,即取n×n区域内像素的均值。C1通过2×2的窗口区域像素求均值再加上本层的阈值,然后经过激活函数的处理,得到S2层。pooling的实现,在保存图片信息的基础上,减少了权重参数,降低了计算成本,还能控制过拟合。本层学习参数共有1*6+6=12个,S2中的每个像素都与C1层中的2×2个像素和1个阈值相连,共6×(2×2+1)×14×14=5880个连接。

S2层和C3层连接

S2层和C3层的连接比较复杂。C3卷积层是由16个大小为10×10的特征映射组成的,当中的每个特征映射与S2层的若干个特征映射的局部感受野(大小为5×5)相连。其中,前6个特征映射与S2层连续3个特征映射相连,后面接着的6个映射与S2层的连续的4个特征映射相连,然后的3个特征映射与S2层不连续的4个特征映射相连,最后一个映射与S2层的所有特征映射相连。

此处卷积核大小为5×5,所以学习参数共有6×(3×5×5+1)+9×(4×5×5+1)+1×(6×5×5+1)=1516个参数。而图像大小为28×28,因此共有151600个连接。

S4层是对C3层进行的降采样,与S2同理,学习参数有16×1+16=32个,同时共有16×(2×2+1)×5×5=2000个连接。
C5层是由120个大小为1×1的特征映射组成的卷积层,而且S4层与C5层是全连接的,因此学习参数总个数为120×(16×25+1)=48120个。

2.4 F6与C5层

F6是与C5全连接的84个神经元,所以共有84×(120+1)=10164个学习参数。

卷积神经网络通过通过稀疏连接和共享权重和阈值,大大减少了计算的开销,同时,pooling的实现,一定程度上减少了过拟合问题的出现,非常适合用于图像的处理和识别。

3 写数字识别算法模型的构建

3.1 输入层设计

输入为28×28的矩阵,而不是向量。

在这里插入图片描述

3.2 激活函数的选取

Sigmoid函数具有光滑性、鲁棒性和其导数可用自身表示的优点,但其运算涉及指数运算,反向传播求误差梯度时,求导又涉及乘除运算,计算量相对较大。同时,针对本文构建的含有两层卷积层和降采样层,由于sgmoid函数自身的特性,在反向传播时,很容易出现梯度消失的情况,从而难以完成网络的训练。因此,本文设计的网络使用ReLU函数作为激活函数。

在这里插入图片描述

3.3 卷积层设计

学长设计卷积神经网络采取的是离散卷积,卷积步长为1,即水平和垂直方向每次运算完,移动一个像素。卷积核大小为5×5。

3.4 降采样层

学长设计的降采样层的pooling方式是max-pooling,大小为2×2。

3.5 输出层设计

输出层设置为10个神经网络节点。数字0~9的目标向量如下表所示:

在这里插入图片描述

4 网络模型的总体结构

在这里插入图片描述

5 部分实现代码

使用Python,调用TensorFlow的api完成手写数字识别的算法。

注:我的程序运行环境是:Win10,python3.。

当然,也可以在Linux下运行,由于TensorFlow对py2和py3兼容得比较好,在Linux下可以在python2.7中运行。


    #!/usr/bin/env python2
    # -*- coding: utf-8 -*-
   
    #import modules
    import numpy as np
    import matplotlib.pyplot as plt
    #from sklearn.metrics import confusion_matrix
    import tensorflow as tf
    import time
    from datetime import timedelta
    import math
    from tensorflow.examples.tutorials.mnist import input_data

    def new_weights(shape):
      return tf.Variable(tf.truncated_normal(shape,stddev=0.05))
    def new_biases(length):
      return tf.Variable(tf.constant(0.1,shape=length))
    def conv2d(x,W):
      return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
    def max_pool_2x2(inputx):
      return tf.nn.max_pool(inputx,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
    
    #import data
    data = input_data.read_data_sets("./data", one_hot=True) # one_hot means [0 0 1 0 0 0 0 0 0 0] stands for 2
    
    print("Size of:")
    print("--Training-set:\t\t{}".format(len(data.train.labels)))
    print("--Testing-set:\t\t{}".format(len(data.test.labels)))
    print("--Validation-set:\t\t{}".format(len(data.validation.labels)))
    data.test.cls = np.argmax(data.test.labels,axis=1)  # show the real test labels: [7 2 1 ..., 4 5 6], 10000values
    
    x = tf.placeholder("float",shape=[None,784],name='x')
    x_image = tf.reshape(x,[-1,28,28,1])
    
    y_true = tf.placeholder("float",shape=[None,10],name='y_true')
    y_true_cls = tf.argmax(y_true,dimension=1)
    # Conv 1
    layer_conv1 = {"weights":new_weights([5,5,1,32]),
            "biases":new_biases([32])}
    h_conv1 = tf.nn.relu(conv2d(x_image,layer_conv1["weights"])+layer_conv1["biases"])
    h_pool1 = max_pool_2x2(h_conv1)
    # Conv 2
    layer_conv2 = {"weights":new_weights([5,5,32,64]),
            "biases":new_biases([64])}
    h_conv2 = tf.nn.relu(conv2d(h_pool1,layer_conv2["weights"])+layer_conv2["biases"])
    h_pool2 = max_pool_2x2(h_conv2)
    # Full-connected layer 1
    fc1_layer = {"weights":new_weights([7*7*64,1024]),
          "biases":new_biases([1024])}
    h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,fc1_layer["weights"])+fc1_layer["biases"])
    # Droupout Layer
    keep_prob = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
    # Full-connected layer 2
    fc2_layer = {"weights":new_weights([1024,10]),
           "biases":new_weights([10])}
    # Predicted class
    y_pred = tf.nn.softmax(tf.matmul(h_fc1_drop,fc2_layer["weights"])+fc2_layer["biases"]) # The output is like [0 0 1 0 0 0 0 0 0 0]
    y_pred_cls = tf.argmax(y_pred,dimension=1) # Show the real predict number like '2'
    # cost function to be optimized
    cross_entropy = -tf.reduce_mean(y_true*tf.log(y_pred))
    optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)
    # Performance Measures
    correct_prediction = tf.equal(y_pred_cls,y_true_cls)
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
    with tf.Session() as sess:
      init = tf.global_variables_initializer()
      sess.run(init)
      train_batch_size = 50
      def optimize(num_iterations):
        total_iterations=0
        start_time = time.time()
        for i in range(total_iterations,total_iterations+num_iterations):
          x_batch,y_true_batch = data.train.next_batch(train_batch_size)
          feed_dict_train_op = {x:x_batch,y_true:y_true_batch,keep_prob:0.5}
          feed_dict_train = {x:x_batch,y_true:y_true_batch,keep_prob:1.0}
          sess.run(optimizer,feed_dict=feed_dict_train_op)
          # Print status every 100 iterations.
          if i%100==0:
            # Calculate the accuracy on the training-set.
            acc = sess.run(accuracy,feed_dict=feed_dict_train)
            # Message for printing.
            msg = "Optimization Iteration:{0:>6}, Training Accuracy: {1:>6.1%}"
            # Print it.
            print(msg.format(i+1,acc))
        # Update the total number of iterations performed
        total_iterations += num_iterations
        # Ending time
        end_time = time.time()
        # Difference between start and end_times.
        time_dif = end_time-start_time
        # Print the time-usage
        print("Time usage:"+str(timedelta(seconds=int(round(time_dif)))))
      test_batch_size = 256
      def print_test_accuracy():
        # Number of images in the test-set.
        num_test = len(data.test.images)
        cls_pred = np.zeros(shape=num_test,dtype=np.int)
        i = 0
        while i < num_test:
          # The ending index for the next batch is denoted j.
          j = min(i+test_batch_size,num_test)
          # Get the images from the test-set between index i and j
          images = data.test.images[i:j, :]
          # Get the associated labels
          labels = data.test.labels[i:j, :]
          # Create a feed-dict with these images and labels.
          feed_dict={x:images,y_true:labels,keep_prob:1.0}
          # Calculate the predicted class using Tensorflow.
          cls_pred[i:j] = sess.run(y_pred_cls,feed_dict=feed_dict)
          # Set the start-index for the next batch to the
          # end-index of the current batch
          i = j
        cls_true = data.test.cls
        correct = (cls_true==cls_pred)
        correct_sum = correct.sum()
        acc = float(correct_sum) / num_test
        # Print the accuracy
        msg = "Accuracy on Test-Set: {0:.1%} ({1}/{2})"
        print(msg.format(acc,correct_sum,num_test))
      # Performance after 10000 optimization iterations
      optimize(num_iterations=10000)
      print_test_accuracy()
      savew_hl1 = layer_conv1["weights"].eval()
      saveb_hl1 = layer_conv1["biases"].eval()
      savew_hl2 = layer_conv2["weights"].eval()
      saveb_hl2 = layer_conv2["biases"].eval()
      savew_fc1 = fc1_layer["weights"].eval()
      saveb_fc1 = fc1_layer["biases"].eval()
      savew_op = fc2_layer["weights"].eval()
      saveb_op = fc2_layer["biases"].eval()
    
      np.save("savew_hl1.npy", savew_hl1)
      np.save("saveb_hl1.npy", saveb_hl1)
      np.save("savew_hl2.npy", savew_hl2)
      np.save("saveb_hl2.npy", saveb_hl2)
      np.save("savew_hl3.npy", savew_fc1)
      np.save("saveb_hl3.npy", saveb_fc1)
      np.save("savew_op.npy", savew_op)
      np.save("saveb_op.npy", saveb_op)

运行结果显示:测试集中准确率大概为99.2%。

在这里插入图片描述
查看混淆矩阵

在这里插入图片描述

6 在线手写识别

请添加图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/672857.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

展现市场布局雄心,ATFX再度亮相非洲峰会,开启区域市场新篇章

自2023年全球市场营销战略部署实施以来&#xff0c;ATFX在全球各区域市场取得了丰硕成果&#xff0c;其品牌实力、知名度、影响力均有大幅提升。在这场全球扩张的征程中&#xff0c;非洲市场日益成为集团关注的焦点。自2023年首次踏上这片充满潜力的市场以来&#xff0c;ATFX持…

定义类并创建类的实例

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 在Python中&#xff0c;类表示具有相同属性和方法的对象的集合。在使用类时&#xff0c;需要先定义类&#xff0c;然后再创建类的实例&#xff0c;通…

谨以此文章记录我的蓝桥杯备赛过程

以国优秀结束了蓝桥杯cb组 鄙人来自电信学院&#xff0c;非科班出身&#xff0c;在寒假&#xff0c;大约2024年2月份&#xff0c;跟着黑马程序员将c基础语法学完了&#xff0c;因为过年&#xff0c;事情较多&#xff0c;没在学了。 最初就是抱着拿省三的态度去打这个比赛的&a…

低代码是什么?开发系统更有什么优势?

低代码&#xff08;Low-Code&#xff09;是一种应用开发方法&#xff0c;它采用图形化界面和预构建的模块&#xff0c;使得开发者能够通过少量的手动编程来快速创建应用程序。这种方法显著减少了传统软件开发中的手动编码量&#xff0c;提高了开发效率&#xff0c;降低了技术门…

图形学初识--多边形剪裁算法

文章目录 前言正文为什么需要多边形剪裁算法&#xff1f;前置知识二维直线直线方程&#xff1a;距离本质&#xff1a;点和直线距离关系&#xff1a; 三维平面平面方程距离本质&#xff1a;点和直线距离关系&#xff1a; Suntherland hodgman算法基本介绍基本思想二维举例问题描…

mysql中EXPLAIN详解

大家好。众所周知&#xff0c;MySQL 查询优化器的各种基于成本和规则的优化会后生成一个所谓的执行计划&#xff0c;这个执行计划展示了接下来具体执行查询的方式。在日常工作过程中&#xff0c;我们可以使用EXPLAIN语句来查看某个查询语句的具体执行计划&#xff0c; 今天我们…

椭圆轨道的周期性运动轨道

一、背景介绍 本节将从轨道六根数的角度&#xff0c;探究目标星为椭圆轨道&#xff0c;追踪星周期性环绕目标的必要条件。根据航天动力学的原理&#xff0c;对于一个椭圆轨道&#xff0c;其轨道能量为 对于能够不产生漂移的情况&#xff0c;绕飞编队的能量。对于追踪星到目标星…

(2024,扩散,去噪调度,维度,误差,收敛速度)适应基于分数的扩散模型中的未知低维结构

Adapting to Unknown Low-Dimensional Structures in Score-Based Diffusion Models 公和众和号&#xff1a;EDPJ&#xff08;进 Q 交流群&#xff1a;922230617 或加 VX&#xff1a;CV_EDPJ 进 V 交流群&#xff09; 目录 0. 摘要 1. 引言 1.1 扩散模型 1.2 现有结果的不…

Xilinx RFSOC 47DR 8收8发 信号处理板卡

系统资源如图所示&#xff1a;  FPGA采用XCZU47DR 1156芯片&#xff0c;PS端搭载一组64Bit DDR4,容量为4GB,最高支持速率&#xff1a;2400MT/s;  PS端挂载两片QSPI X4 FLASH&#xff1b;  PS支持一路NVME存储&#xff1b;  PS端挂载SD接口&#xff0c;用于存储程序&…

图解大模型分布式并行各种通信原语

背景 在分布式集群上执行大模型任务时候&#xff0c;往往使用到数据并行&#xff0c;流水线并行&#xff0c;张量并行等技术&#xff0c;这些技术本质上也就是对数据进行各种方案的切分&#xff0c;然后放到不同的节点上运算。不同节点在计算的过程中需要对数据分发或者同步等…

LeetCode刷题之HOT100之在排序数组中查找元素的第一个和最后一个位置

下午雨变小了&#xff0c;但我并未去实验室&#xff0c;难得的一天呆在宿舍。有些无聊&#xff0c;看看这个&#xff0c;弄弄那个&#xff0c;听听歌&#xff0c;消磨时间。不知觉中时间指针蹦到了九点&#xff0c;做题啦&#xff01;朋友推荐了 Eason 的 2010-DUO 演唱会&…

一文了解经典报童模型的扩展问题

文章目录 1 引言2 经典报童模型3 综述文章4 模型扩展4.1 扩展目标函数4.2 增加约束条件4.3 增加优化变量4.4 扩展模型参数4.5 扩展问题场景 5 总结6 相关阅读 1 引言 时间过的真快呀&#xff0c;已经6月份了。距离上一篇文章发表&#xff0c;已经过去了将近一个月&#xff0c;…

JS(DOM、事件)

DOM 概念:Document Object Model&#xff0c;文档对象模型。将标记语言的各个组成部分封装为对应的对象: Document:整个文档对象Element:元素对象Attribute:属性对象Text:文本对象Comment:注释对象 JavaScript通过DOM&#xff0c;就能够对HTML进行操作: 改变 HTML 元素的内…

系统操作规约(System Operation Contract)

领域建模补充 问题&#xff1a; 联系有方向性 属性有类型 领域模型尽量避免出现界面相关的东西 习题 问题 考察点 系统操作规约 示例 A) Operation: MakeSale() Cross References: UC&#xff1a;Purchase Preconditions: User has logged in Postconditions: An ProductLis…

集成算法实验与分析(软投票与硬投票)

概述 目的&#xff1a;让机器学习效果更好&#xff0c;单个不行&#xff0c;集成多个 集成算法 Bagging&#xff1a;训练多个分类器取平均 f ( x ) 1 / M ∑ m 1 M f m ( x ) f(x)1/M\sum^M_{m1}{f_m(x)} f(x)1/M∑m1M​fm​(x) Boosting&#xff1a;从弱学习器开始加强&am…

Fiddler抓包工具的使用

目录 1、抓包原理&#xff1a;&#x1f447; 2、抓包结果&#x1f447; 1&#xff09;如何查看一个http请求的原始摸样&#xff1a; 2&#xff09;分析数据格式&#xff1a; 3、请求格式分析&#x1f447; 4、响应格式分析&#x1f447; 官网下载&#xff1a;安装过程比较…

win11+vmware16.0+Ubuntu22.04+开机蓝屏

总结 本机系统 vm虚拟机下载 参考链接 1. 小白必看的Ubuntu20.04安装教程&#xff08;图文讲解&#xff09; 2. 软件目录【火星】——VM下载 3. Win11使用VMware15/16启动虚拟机直接蓝屏的爬坑记录 VMware16.0

C++一个StringBad类

设计一个字符串类,下面的代码是一个不好的设计,起名StringBad。 //stringbad.h #pragma once //一个设计有问题的string类 #include <iostream> using namespace std;class StringBad { public:StringBad();//默认构造函数StringBad(const char* s);//构造函数~StringBa…

执法装备管理系统DW-S304的概念与特点

执法装备管理系统&#xff08;DW-S304&#xff09;适用于多种警务和安保场景&#xff0c;如警察局、特警队、边防检查站、监狱管理系统、生态环境局、执法大队等。它可以帮助这些机构提高对装备的控制能力&#xff0c;确保装备在需要时能够迅速到位&#xff0c;同时也减少了因装…

C++ 习题精选(2)

目录 1. 验证回文串2. 字符串相乘 1. 验证回文串 题目描述&#xff1a;如果在将所有大写字符转换为小写字符、并移除所有非字母数字字符之后&#xff0c;短语正着读和反着读都一样。则可以认为该短语是一个 回文串 。字母和数字都属于字母数字字符。给你一个字符串 s&#xff…