汇编原理(二)寄存器——CPU工作原理

寄存器:所有寄存器都是16位(0-15),可以存放两个字节

        AX,BX,CX,DX存放一般性数据,称为通用寄存器

        AX的逻辑结构。最大存放的数据为2的16次方减1。可分为AH和AL,兼容8位寄存器。

:1word = 2Byte。二进制和八进制、十六进制的转化(0000)-(0)。

汇编指令

        不区分大小写

        “越位”会“丢弃”:“丢弃”只是指禁止为不能在8位的寄存器中保存,但是cpu不是真的丢弃这个进位值。

物理地址:内存单元有地址,所有的内存单元构成的储存空间是一个一维的线性空间

16位的cpu:运算器一次最多可以处理16位的数据;寄存器的最大宽度位16位;寄存器与运算器之间的通路是16位。(64位同理)

        

        地址加法器:         物理地址(20位) = 段地址(16位) × 16 + 加偏移地址(16位 )

                          1. cpu可以用不同的段地址和物理地址形成同一个物理地址    

                          2.仅通过变化偏移地址来进行寻址,最多可以定位0 - FFFFH,64K个内存单元。    (不太明白各种量度之间的转换)

                          3.格式:短地址XXXX:偏移地址YYYY。意思是在短地址XXXX的基础上,乘16,加上偏移地址,之间用冒号隔开。              

        比喻:

:并不是内存被划分位一个一个段,是自己怎么看

        一个段的起始地址一定是16的倍数,因为“段地址×16”;偏移地址为16位,所以一个段的最大长度为16位

段寄存器:用来存储段地址(CS、DS、SS、ES等)

        CS(存放段地址)和IP(存放偏移地址):最关键的寄存器,指示当前CPU要读取指令的地址:CS是代码段寄存器,IP是指令指针寄存器

        用CS作为寄存器,代码将会被当作指令,其他三种寄存器则不然,有可能当作数据或其他。

        IP怎么知道他每次移动多少?比如说怎么知道从20000到20003?整个工作原理过程还不是很懂

修改CS、IP的指令:传送指令mov不能修改CS、IP的内容,而应该用转移指令jmp。

                     指令:jmp 段地址:偏移地址。含义:用指令中给出的段地址修改CS,偏移地址修改IP

                     指令:jmp 某一合法寄存器。含义:仅修改IP的内容,类似于:jmp IP, ax

         举例:如果不跳转,IP每次加2或者3。但如果遇到例如 jmp bx,IP变为0,跳转回去。

                流程如下:死循环

代码段:将长度为N(<64KB)的一组代码段,存在一组地址连续、起始地址为16的倍数的内存单元中,这段内存是用来存放代码的,从而定义了一个代码段。

        怎么看这个代码段的长度、存储在那一段内存单元、段地址

        要将CS:IP指向,所定义的代码段中的第一条指令的首地址

debug调试程序:(后面还需要学)

        r:查看、改变CPU寄存器的内容。

        d:查看内存中的内容

        e:改写内存中的内容(使用机器指令?

        a:以汇编指令的格式在内存中写入一条机器指令                 u:将机器指令翻译为湖

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/672645.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

c++实现:小型公司的信息管理系统(关于多态)

前言&#xff1a; 介绍员工信息&#xff1a;一个小型公司的人员信息管理系统 某小型公司&#xff0c;主要有四类人员&#xff1a;经理、技术人员、销售经理和推销员。现在&#xff0c;需要存储这些人员的姓名、编号、级别、当前薪水。计算月薪总额并显示全部信息人员编号基数为…

前端组件业务数据选择功能优雅写法

1. 业务场景 后台管理在实际业务中&#xff0c;经常可见的功能为&#xff1a;在当前的页面中从其他列表中选择数据。 例如&#xff0c;在一个商品活动列表页面中 需要选择配置的商品。 2. 遇到问题 从代码划分的角度来说&#xff0c;每个业务列表代码首先分散开来&#xff0…

基于Weaviate构建多模态检索和多模态检索增强(RAG): Building Multimodal Search and RAG

Building Multimodal Search and RAG 本文是学习 https://www.deeplearning.ai/short-courses/building-multimodal-search-and-rag/ 这门课的学习笔记。 What you’ll learn in this course Learn how to build multimodal search and RAG systems. RAG systems enhance an …

张大哥笔记:下一个风口是什么?

我们经常会问&#xff0c;下一个风口是什么&#xff1f;我们可以大胆预测一下&#xff0c;2024年的风口是什么呢&#xff1f; 40年前&#xff0c;如果你会开车&#xff0c;那就是响当当的铁饭碗&#xff1b; 30年前&#xff0c;如果你会英语和电脑&#xff0c;那也绝对是个人才…

SSMP整合案例第五步 在前端页面上拿到service层调数据库里的数据后列表

在前端页面上列表 我们首先看看前端页面 我们已经把数据传入前端控制台 再看看我们的代码是怎么写的 我们展示 数据来自图dataList 在这里 我们要把数据填进去 就能展示在前端页面上 用的是前端数据双向绑定 axios发送异步请求 函数 //钩子函数&#xff0c;VUE对象初始化…

RK3568笔记二十九:RTMP推流

若该文为原创文章&#xff0c;转载请注明原文出处。 基于RK3568的RTMP推流测试&#xff0c;此代码是基于勇哥的github代码修改的&#xff0c;源码地址MontaukLaw/3568_rknn_rtmp: rk3568的推理推流 (github.com) 感兴趣的可以clone下来测试。 也可以下载修改后的代码测试。Y…

VirtualBox Ubuntu系统硬盘扩容

1、关闭虚拟机&#xff0c;找到需要扩容的硬盘&#xff0c;修改为新的容量80GB&#xff0c;应用保存。 2、打开VM&#xff0c;进入系统&#xff0c;使用lsblk可以看到硬盘容量已经变为80GB&#xff0c;但硬盘根分区还没有扩容&#xff0c;使用df查看根文件系统也没有扩容。 [19…

Java八股文面试全套真题

Java八股文面试全套真题 一、Redis1.1、你在最近的项目中哪些场景使用了redis呢&#xff1f;1.2、缓存穿透1.3、布隆过滤器1.4、缓存击穿1.5、缓存雪崩1.6、redis做为缓存&#xff0c;mysql的数据如何与redis进行同步呢&#xff1f;&#xff08;双写一致性&#xff09;1.6.1、读…

微信小程序的服务调取

微信小程序的服务调取概述 微信小程序允许开发者通过网络请求与服务器进行交互&#xff0c;从而实现数据的上传和下载。这是通过小程序提供的API&#xff0c;如wx.request、wx.downloadFile、wx.uploadFile等来完成的。这些API使得小程序可以从远程服务器获取数据&#xff0c;…

打造智能化未来:智能运维系统架构解析与应用实践

在数字化转型的大背景下&#xff0c;智能运维系统成为了企业提升效率、降低成本、增强安全性的关键利器。本文将深入探讨智能运维系统的技术架构&#xff0c;介绍其核心要素和应用实践&#xff0c;帮助读者全面了解智能运维系统的概念、优势和应用价值。 ### 1. 智能运维系统的…

uniapp实现微信小程序调用云函数【vue3】

本人是从微信开发者工具写原生微信小程序一步一步走来&#xff0c;由于vue3框架的慢慢的步入前端市场&#xff0c;为了不被前端市场遗弃&#xff0c;果断从vue2开始步入vue3的学习&#xff0c;本人习惯在在HBuilder X写uniapp的项目&#xff0c;过去uniapp默认vue2框架&#xf…

MT3045 松鼠接松果

思路&#xff1a; 求x的一个区间&#xff0c;使区间中的松果的最大y坐标和最小y坐标的差至少为D。若有多个区间&#xff0c;则取最小的那个。 即使用单调队列不断维护最大值和最小值。 首先L固定不动&#xff0c;R不断右移&#xff1a; 即若函数f(R)max[L,R]-min[L,R] >…

Pytest框架中用例用例执行常用参数介绍

pytest 支持通过命令行参数来定制测试运行的方式。以下是一些常用的 pytest 执行参数介绍。 学习目录 -q 或 --quiet: 安静模式&#xff0c;只显示进度和摘要 -s : 选项允许在测试的输出中捕获 stdout 和 stderr。 -v : 选项会使 pytest 的输出更加详细。 -k &#xff1a;…

数据分析必备:一步步教你如何用Pandas做数据分析(15)

1、Pandas 数据丢失 Pandas 数据丢失的操作实例 在现实生活中&#xff0c;数据丢失始终是一个问题。机器学习和数据挖掘等领域在模型预测的准确性方面面临严重问题&#xff0c;因为缺少值会导致数据质量较差。在这些领域中&#xff0c;缺失值处理是使模型更准确和有效的主要重…

godot.bk2

1.$node_name 其实 就是 get_node 的语法糖 2.场景内部用get_node&#xff0c;场景外部用信号 这是自定义信号的绑定&#xff0c;如果是内置信号&#xff0c;直接右键点击链接到一个函数即可 3.场景切换和摄像头一直居中 4.class_name命名一个类&#xff0c;extends继承&…

【TB作品】MSP430F149,ADC采集,光强GY-30,DS18B20温度采集

功能 读取了GY-30 DS18B20 P6.0ADC P6.1ADC 显示到了LCD12864 硬件 //GY30 //SCL–P1.0 //SDA–P1.1 //VCC–3.3V //GND–GND //ADDR–不接 //DS18B20 //DATA–P1.6 //VCC–3.3V //GND–GND //ADC //DATA–P1.6 //P6.0 P6.1 ADC输入口 部分程序 #include <msp430.h>…

碰撞检测技术在AI中的重要作用

引言&#xff1a; 随着人工智能技术的不断发展&#xff0c;AI已经渗透到我们生活的方方面面。在游戏、机器人、虚拟现实等领域中&#xff0c;碰撞检测技术扮演着至关重要的角色。本文将探讨碰撞检测技术在AI中的作用&#xff0c;以及如何利用这项技术来改善AI系统的性能和用户体…

网络空间安全数学基础·环

4.1 环与子环 &#xff08;理解&#xff09; 4.2 整环、除环、域 &#xff08;熟练&#xff09; 4.3 环的同态、理想 &#xff08;掌握&#xff09; 4.1 环与子环 定义&#xff1a;设R是一非空集合&#xff0c;在R上定义了加法和乘法两种代数运算&#xff0c; 分别记为ab和a…

考研数学:有些无穷小不能用等价无穷小的公式?

今天要给大家分享的笔记是&#xff1a;《有些无穷小虽然是无穷小&#xff0c;但却不能用无穷小的相关公式》&#xff1a;

MySQL(十一) 用户管理

1.用户 1.1 用户信息 MySQL中的用户&#xff0c;都存储在系统数据库mysql的user表中 mysql> select host,user,authentication_string from user; --------------------------------------------------------------------- | host | user | authentication…