19.4-STM32接收数据-状态显示在屏幕 openMV寻迹与小车控制 Openmv+STM32F103C8T6视觉巡线小车

这个是全网最详细的STM32项目教学视频。
第一篇在这里:
视频在这里

STM32智能小车V3-STM32入门教程-openmv与STM32循迹小车-stm32f103c8t6-电赛 嵌入式学习 PID控制算法 编码器电机 跟随

19.4-STM32接收数据-状态显示在屏幕

先通过串口上位机模拟发送、

STM32有视觉循迹模式、该模式下接收到数据根据状态显示在屏幕上,现在此状态并不控制电机。
在这里插入图片描述
复制一下18在上面基础改,命名成19-4_LED

可以先复制到桌面英文路径,防止出现中文路径兼容问题。
在这里插入图片描述
在这里插入图片描述
看原理图摄像头是预留什么引脚
在这里插入图片描述
PCB中可以看到接口位置
在这里插入图片描述
所以我们要初始化一下串口二,然后开启串口接收中断
在这里插入图片描述
串口2 开启初始化

在这里插入图片描述
开启串口中断
在这里插入图片描述
生成代码
在这里插入图片描述
打开代码

在这里插入图片描述
如果发现18章代码经常出现黑屏,那可能就是6050的初始化卡住了,我们可以注释掉一下MPU6050部分的代码。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
我们先定义一个串口二接收数据变量

uint8_t g_ucUsart2ReceiveData;  //保存串口二接收的数据

在这里插入图片描述
开启接收中断

  HAL_UART_Receive_IT(&huart2,&g_ucUsart2ReceiveData,1);  //串口二接收数据

在这里插入图片描述
声明一下变量

extern uint8_t g_ucUsart2ReceiveData;  //保存串口二接收的数据

在这里插入图片描述
我们需要在串口中断回调函数中加入我们对接收到数据的解析

	if(huart == &huart2)//判断中断源 是否来自串口二
	{
		//这里增加解析函数	
		HAL_UART_Receive_IT(&huart2,&g_ucUsart2ReceiveData,1);  //启动串口二接收数据
	}

在这里插入图片描述
在usart.c文件中定义一个函数
在这里插入图片描述
在这里插入图片描述

/*******************
*  @brief  摄像头串口协议解析函数 可以连接K210或openmv等
*  @param  data:串口接收到的每个字节
*  @return  
*
*******************/
void usartCamera_Receive_Data(uint8_t data)
{
	static uint8_t state = 0;//定义静态static 变量
	
	if(state==0&&data==0xA5) //判断第一个是不是帧头0xA5
	{
		state=1;//是帧头0xA5 赋值state=1 表示接收下一个数据
		//数据存储在数组中 "g_ucUsart2ReceivCounter++",这里是先用后加,比如g_ucUsart2ReceivCounter 初值为0,执行这个是先g_ucaUsart2ReceiveBuffer[0]=data,然后g_ucUsart2ReceivCounter++,即后g_ucUsart2ReceivCounter = 1的
		g_ucaUsart2ReceiveBuffer[g_ucUsart2ReceivCounter++] = data;
	}
	else if(state==1&&data==0xA6) //第二个是不是帧头0xA6
	{
		state=2;//如果第二个是帧头0xA6 赋值state=2 表示接收下一个数据
		g_ucaUsart2ReceiveBuffer[g_ucUsart2ReceivCounter++] = data;//保存数据
	}
	else if(state==2)//然后确定开头是0XA5 0XA6 就开始接收
	{
		g_ucaUsart2ReceiveBuffer[g_ucUsart2ReceivCounter++]=data;
		if(g_ucUsart2ReceivCounter>9||data==0x5B) state=3;  //接收大于9个或者接收到帧尾0X5B 就置位状态三
	}
	else if(state==3) //状态三
	{
		if(g_ucaUsart2ReceiveBuffer[g_ucUsart2ReceivCounter-1] == 0x5B)  //确定 最后一个是不是0x5B帧尾 是帧尾0x5B 就认为通信正确 处理数据
		{
			state = 0;					//这里就可以处理数据了、处理完记得清空数组和重置标志位与计数值
			g_ucUsart2ReceivCounter = 0;//清零计数值
			//比如根据数据设置红外旋转偏移状态

			//1.设置快速 慢速右边 左边 数字存储的变量意义: [0]和[1]:帧头、[2]:摄像头左边数第一个感兴趣区域、[3]:左边第二个、[4]:左边第三个、[5]:左边第四个、[6]:左边第五个、[7]:帧尾
				 if(g_ucaUsart2ReceiveBuffer[6]==0&&g_ucaUsart2ReceiveBuffer[5]==0&&g_ucaUsart2ReceiveBuffer[3]==0&&g_ucaUsart2ReceiveBuffer[2]==0)
				 {
					g_cThisState=0;//前进
					g_lHW_State=22222;//设置这个显示在OLED上方便调试 五个值 以此从左向右表示 从左向右的五个区域
				 }
				 if(g_ucaUsart2ReceiveBuffer[6]==0&&g_ucaUsart2ReceiveBuffer[5]==1&&g_ucaUsart2ReceiveBuffer[3]==0&&g_ucaUsart2ReceiveBuffer[2]==0)
				 {
					g_cThisState=-1;//应该右转
					g_lHW_State=22212;	//表示右数第二个 识别到线
				 }
				 if(g_ucaUsart2ReceiveBuffer[6]==1&&g_ucaUsart2ReceiveBuffer[5]==0&&g_ucaUsart2ReceiveBuffer[3]==0&&g_ucaUsart2ReceiveBuffer[2]==0)
				 {g_cThisState=-2;//快速右转
				 g_lHW_State=22221;
				 }
				 if(g_ucaUsart2ReceiveBuffer[6]==1&&g_ucaUsart2ReceiveBuffer[5]==1&&g_ucaUsart2ReceiveBuffer[3]==0&&g_ucaUsart2ReceiveBuffer[2]==0)
				 {g_cThisState=-3;//快速右转
				 g_lHW_State=22211;
				 }
				 if(g_ucaUsart2ReceiveBuffer[6]==0&&g_ucaUsart2ReceiveBuffer[5]==0&&g_ucaUsart2ReceiveBuffer[3]==1&&g_ucaUsart2ReceiveBuffer[2]==0)
				 {g_cThisState=1;//应该左转
				 g_lHW_State=21222;
				 }
                 if(g_ucaUsart2ReceiveBuffer[6]==0&&g_ucaUsart2ReceiveBuffer[5]==0&&g_ucaUsart2ReceiveBuffer[3]==0&&g_ucaUsart2ReceiveBuffer[2]==1)
				 {g_cThisState=2;//快速左转
				 g_lHW_State=12222;
				 }
                 if(g_ucaUsart2ReceiveBuffer[6]==0&&g_ucaUsart2ReceiveBuffer[5]==0&&g_ucaUsart2ReceiveBuffer[3]==1&&g_ucaUsart2ReceiveBuffer[2]==1)
				 {g_cThisState=3;//快速左转
				 g_lHW_State=11222;
				 }

				//2.然后清空数组
				for(int i=0;i<10;i++) g_ucaUsart2ReceiveBuffer[i]=0x00;//清空数组
				
		}
		else //不是帧尾说明通信错误重新开始接收
		{
			state=0;
			g_ucUsart2ReceivCounter =0;
			for(int i=0;i<10;i++) g_ucaUsart2ReceiveBuffer[i]=0x00;//清空数组
		}
	}
	else
	{	//其他异常清空
		state=0;
		g_ucUsart2ReceivCounter =0;
		for(int i=0;i<10;i++) g_ucaUsart2ReceiveBuffer[i]=0x00;//清空数组
	}
}

然后声明一下变量

extern int8_t g_cThisState ;//这次状态

在这里插入图片描述
定义一个变量 并且在main文件中声明一下

int g_lHW_State = 0;//帮助视觉调试 用于表示红外对管或者视觉摄像头识别状态

在这里插入图片描述
声明一下

extern int g_lHW_State;//帮助视觉调试 用于表示红外对管或者视觉摄像头识别状态

在这里插入图片描述
我们需要再定义模式,这个模式是视觉循迹模式

视觉模式下 我们显示一下,我们之前赋值的变量 以测试我们接收的数据是否正确。

			//这里编写触发中断后要执行的程序
			if(g_ucMode == 6) g_ucMode = 1;//g_ucMode模式是0 1 2 3 4 5  6
			else
			{
				g_ucMode+=1;
			}

在这里插入图片描述
增加模式6,的功能,我们先只显示视觉识别结果

	if(g_ucMode == 6)
	{
		sprintf((char*)OledString, "lHW:%d  ", g_lHW_State);//视觉识别结果
		OLED_ShowString(0,0,OledString,12);//这个是oled驱动里面的,是显示位置的一个函数,
		motorPidSetSpeed(0,0);//停住电机防止乱跑 方便调试
	}
	

在这里插入图片描述
别忘记我们的解析函数,加到串口中断处理函数中

		usartCamera_Receive_Data(g_ucUsart2ReceiveData);

在这里插入图片描述
修改上面程序经过测试,单片机

编译上面程序,并烧录到我们的单片机、单片机连接到电脑、然后电脑模拟openmv发送正确格式的数据,手动点击SSCOM发送数据、单片机可以接收到数据并显示在OLED上(观察的是OLED的第一行数值变化)、当我们设置每1ms发送一次数据时候,单片机的OLED有时候会出现卡死的情况。所以是单片机串口接收大量数据卡死的情况,经过网上搜索发现解决问题的办法。

**这个博客是搜索到可以解决问题的链接:**https://blog.csdn.net/qq_44629109/article/details/131002223

参考博客如下部分:
在这里插入图片描述
所以我们要更改如下代码:

  __HAL_UART_ENABLE_IT(&huart2, UART_IT_ERR);// 启用UART2的错误中断功能

在这里插入图片描述
在USART.C 中添加如下代码

/* UART 错误回调函数 处理串口错误 */
void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
{
    if(__HAL_UART_GET_FLAG(huart,UART_FLAG_ORE) != RESET) //使用__HAL_UART_GET_FLAG宏检查UART的overrun错误标志位是否被置位。如果返回值不等于RESET,表示overrun错误标志位被置位,即发生了overrun错误
    {
        __HAL_UART_CLEAR_OREFLAG(huart);//使用__HAL_UART_CLEAR_OREFLAG宏清除UART的overrun错误标志位
        HAL_UART_Receive_IT(&huart2,&g_ucUsart2ReceiveData,1);  //使用HAL库函数启动UART2接收中断,并设置接收缓冲区的大小为1字节
    }
}

在这里插入图片描述
添加串口2接收变量的声明

extern uint8_t g_ucUsart2ReceiveData;  //保存串口二接收的数据

在这里插入图片描述
让单片机处于模式6(按六下 KEY1)
在这里插入图片描述
上面我们测试通过上位机发送数据,然后观察屏幕。

然后我们把STM32底板接到openmv,openmv连接电脑,openmv使用的程序是19章3节的程序19-3-openmv
在这里插入图片描述
然后上面如果没有问题,就可以把openmv 程序通过"将打开的脚本保存到openmv Cam(作为main.py)"

接法如下:
在这里插入图片描述
这里就说明了如何接受的数据,后面的19.5讲解利用数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/672520.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SwiftUI知识点(一)

前言&#xff1a; Swift知识点&#xff0c;大至看完了&#xff0c;公司项目是Swift语言写的&#xff0c;后续苹果新出的SwiftUI&#xff0c;也需要学习一下 不知觉间&#xff0c;SwiftUI是19年出的&#xff0c;现在24年&#xff0c;5年前的东西了 学习的几个原因&#xff1a; …

探索DIYGW可视化开发工具:提升UniApp项目效率与质量的新途径

一、引言 在快速迭代和不断创新的移动应用开发领域中&#xff0c;开发者们常常面临着一个共同的挑战&#xff1a;如何在保证开发质量的同时&#xff0c;缩短开发周期。近期&#xff0c;一款名为DIYGW的可视化开发工具进入了我们的视野&#xff0c;它以其独特的拖拽式开发方式和…

Linux共享内存创建和删除

最近项目中使用到了共享内存记录下 创建共享内存: 删除共享内存: 代码: #include <stdio.h> #include <stdlib.h> #include <string.h> #include <fcntl.h> #include <sys/mman.h> #include <sys/stat.h> #include <u…

计算机科技的飞跃:从机械到量子的革命之旅

计算机科技的历史长河中&#xff0c;涌现出了许多划时代的事件和发明&#xff0c;它们不仅标志着技术的飞跃&#xff0c;也深刻地改变了人类生活的方方面面。 ENIAC的诞生 在第二次世界大战的硝烟中&#xff0c;美国军方迫切需要一种能够迅速解决复杂计算问题的工具&#xff0…

深入理解文件系统和日志分析

文件是存储在硬盘上的&#xff0c;硬盘上的最小存储单位是扇区&#xff0c;每个扇区的大小是512字节。 inode&#xff1a;存储元信息&#xff08;包括文件的属性&#xff0c;权限&#xff0c;创建者&#xff0c;创建日期等等&#xff09; block&#xff1a;块&#xff0c;连续…

SpringMVC:转发和重定向

1. 请求转发和重定向简介 参考该链接第9点 2. forward 返回下一个资源路径&#xff0c;请求转发固定格式&#xff1a;return "forward:资源路径"如 return "forward:/b" 此时为一次请求返回逻辑视图名称 返回逻辑视图不指定方式时都会默认使用请求转发in…

2024年06月数据库流行度最新排名

点击查看最新数据库流行度最新排名&#xff08;每月更新&#xff09; 2024年06月数据库流行度最新排名 TOP DB顶级数据库索引是通过分析在谷歌上搜索数据库名称的频率来创建的 一个数据库被搜索的次数越多&#xff0c;这个数据库就被认为越受欢迎。这是一个领先指标。原始数…

模板-初阶

引言&#xff1a; 在C&#xff0c;我们已经学过了函数重载&#xff0c;这使得同名函数具有多个功能。但是还有一种更省力的方法&#xff1a;采用模板。 本文主要介绍以下内容 1. 泛型编程 2. 函数模板 3. 类模板 1.泛型编程 在将这一部分之前&#xff0c;通过一个故事引…

语言模型的校准技术:增强概率评估

​ 使用 DALLE-3 模型生成的图像 目录 一、说明 二、为什么校准对 LLM 模型至关重要 三、校准 LLM 概率的挑战 四、LLM 的高级校准方法 4.1 语言置信度 4.2 增强语言自信的先进技术 4.3 基于自一致性的置信度 4.4 基于 Logit 的方法 五、代理模型或微调方法 5.1 使用代…

Python 网络爬虫:深入解析 Scrapy

大家好&#xff0c;在当今数字化时代&#xff0c;获取和分析网络数据是许多项目的关键步骤。从市场竞争情报到学术研究&#xff0c;网络数据的重要性越来越被人们所认识和重视。然而&#xff0c;手动获取和处理大量的网络数据是一项繁琐且耗时的任务。幸运的是&#xff0c;Pyth…

Winform ListView 嵌入组合框、布尔、图片等复杂控件

一、Winform ListView 显示复杂控件示例 以下展示了两种实现思路方案。最后修改日期 2024-05 surfsky 1.1 方案一&#xff1a;ListView 结合组合框进行模拟编辑 基本思路 在界面上放置一个lisview和一个combobox&#xff0c;combobox平时是隐藏的。点击listview&#xff0c…

机械设计手册第一册:公差

形位公差的标注&#xff1a; 形位公差框格中&#xff0c;不仅要表达形位公差的特征项目、基准代号和其他符号&#xff0c;还要正确给出公差带的大小、形状等内容。 1.形位公差框格&#xff1a; 形位公差框格由两个框格或多个格框组成&#xff0c;框格中的主要内容从左到右按…

mysql中基于规则的优化

大家好。我们在平时开发的过程中可能会写一些执行起来十分耗费性能的语句。当MySQL遇到这种sql时会依据一些规则&#xff0c;竭尽全力的把这个很糟糕的语句转换成某种可以比较高效执行的形式&#xff0c;这个过程被称作查询重写&#xff0c;今天我们就来聊一下mysql在查询重写时…

FreeRTOS基础(八):FreeRTOS 时间管理

前面我们用了FreeRTOS中的延时函数&#xff0c;本篇博客就来探讨FreeRTOS中的延时函数&#xff0c;看看他们是如何发挥作用的。当我们在裸机开发中调用delay_ms()函数时&#xff0c;我们的处理器将不处理任何事&#xff0c;造成处理器资源的浪费。 为此&#xff0c;为了提高CPU…

ChatTTS改良版 - 高度逼真的人类情感文本生成语音工具(TTS)本地一键整合包下

先介绍下ChatTTS 和之前发布的 Fish Speech 类似&#xff0c;都是免费开源的文本生成语音的AI软件&#xff0c;但不同的是&#xff0c;ChatTTS测试下来&#xff0c;对于人类情感语调的模仿&#xff0c;应该是目前开源项目做的最好的&#xff0c;是一款高度接近人类情感、音色、…

计算机工作原理(程序猿必备的计算机常识)

目录 一、计算机工作原理1.冯诺依曼体系2. CPU执行指令的过程 二、操作系统三、进程的概念四、进程的管理五、进程的调度 一、计算机工作原理 1.冯诺依曼体系 现在的计算机大多都遵循冯诺依曼体系结构 CPU&#xff1a; 中央处理器&#xff0c;进行算术运算和逻辑判断&#…

百度文心一言API批量多线程写文章软件-key免费无限写

百度文心大模型的两款主力模型ENIRE Speed、ENIRE Lite全面免费&#xff0c;即刻生效。 百度文心大模型的两款主力模型 这意味着&#xff0c;大模型已进入免费时代&#xff01; 据了解&#xff0c;这两款大模型发布于今年 3 月&#xff0c;支持 8K 和 128k 上下文长度。 ER…

赢销侠的秘密武器:如何提升客户满意度?

在竞争激烈的商业战场上&#xff0c;客户满意度是企业能否长盛不衰的关键。它如同一面镜子&#xff0c;映照出企业的服务质量和产品实力。那么&#xff0c;赢销侠们是如何运用秘密武器来提升客户满意度的呢&#xff1f;本文将深入探讨这一课题&#xff0c;并揭示背后的策略与智…

灾备方案中虚拟化平台元数据备份技术应用

首先需要介绍下元数据是什么&#xff1f; 元数据&#xff08;Metadata&#xff09;是一个重要的概念&#xff0c;它描述了数据的数据&#xff0c;也就是说&#xff0c;元数据提供了关于数据属性的信息。这些属性可能包括数据的存储位置、历史数据、资源查找、文件记录等。 元…

LabVIEW与欧陆温控表通讯的实现与应用:厂商软件与自主开发的优缺点

本文探讨了LabVIEW与欧陆温控表通讯的具体实现方法&#xff0c;并对比了使用厂商提供的软件与自行开发LabVIEW程序的优缺点。通过综合分析&#xff0c;帮助用户在实际应用中选择最适合的方案&#xff0c;实现高效、灵活的温控系统。 LabVIEW与欧陆温控表通讯的实现与应用&#…