Python-OpenCV中的图像处理-图像梯度

Python-OpenCV中的图像处理-图像梯度

  • 图像梯度
    • Sobel 算子和 Scharr 算子
    • Laplacian 算子

图像梯度

  • 图像梯度,图像边界等
  • 使用到的函数有: cv2.Sobel(), cv2.Scharr(), cv2.Laplacian() 等
  • 原理:梯度简单来说就是求导。OpenCV 提供了三种不同的梯度滤波器,或者说高通滤波器: Sobel,Scharr 和 Laplacian。Sobel, Scharr 其实就是求一阶或二阶导数。 Scharr 是对 Sobel(使用小的卷积核求解求解梯度角度时)的优化。 Laplacian 是求二阶导数。

Sobel 算子和 Scharr 算子

Sobel 算子是高斯平滑与微分操作的结合体,所以它的抗噪声能力很好。你可以设定求导的方向( xorder 或 yorder)。还可以设定使用的卷积核的大小( ksize)。如果 ksize=-1,会使用 3x3 的 Scharr 滤波器,它的的效果要比 3x3 的 Sobel 滤波器好(而且速度相同,所以在使用 3x3 滤波器时应该尽量使用 Scharr 滤波器)。 3x3 的 Scharr 滤波器卷积核如下:
X 方向 = [ − 3 0 3 − 10 0 10 − 3 0 3 ] , Y 方向 = [ − 3 − 10 − 3 0 0 0 3 10 3 ] X方向=\left[ \begin{matrix} -3&0&3\\-10&0&10\\-3&0&3 \end{matrix}\right],Y方向=\left[ \begin{matrix} -3&-10&-3\\0&0&0\\3&10&3\end{matrix}\right] X方向= 31030003103 ,Y方向= 30310010303

Laplacian 算子

拉普拉斯算子可以使用二阶导数的形式定义,可假设其离散实现类似于二阶 Sobel 导数,事实上, OpenCV 在计算拉普拉斯算子时直接调用 Sobel 算子。
拉普拉斯滤波器使用的卷积核:
k e r n e l = [ 0 1 0 1 − 4 1 0 1 0 ] kernel=\left[ \begin{matrix} 0&1&0\\1&-4&1\\0&1&0\end{matrix}\right] kernel= 010141010

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('./resource/opencv/image/sudoku.png', cv2.IMREAD_GRAYSCALE)

# 拉普拉斯 cv2.CV_64F 输出图像的深度(数据类型),可以使用-1, 与原图像保持一致 np.uint8
laplacian = cv2.Laplacian(img, cv2.CV_64F, ksize=3)
laplacian = cv2.convertScaleAbs(laplacian)  

# 索贝尔 X方向, 参数 1,0 为只在 x 方向求一阶导数,最大可以求 2 阶导数
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=5)
sobelx = cv2.convertScaleAbs(sobelx)

# 索贝尔 Y方向, 参数 0,1 为只在 y 方向求一阶导数,最大可以求 2 阶导数
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=5) 
sobely = cv2.convertScaleAbs(sobely)

# Scharr X方向,
scharrx = cv2.Scharr(img, cv2.CV_64F, 1, 0)
scharrx = cv2.convertScaleAbs(scharrx)

# Scharr Y方向,
scharry = cv2.Scharr(img, cv2.CV_64F, 0, 1)
scharry = cv2.convertScaleAbs(scharry)

plt.subplot(321), plt.imshow(img, cmap='gray'), plt.title('Origin'), plt.xticks([]), plt.yticks([])
plt.subplot(322), plt.imshow(laplacian, cmap='gray'), plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(323), plt.imshow(sobelx, cmap='gray'), plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(324), plt.imshow(sobely, cmap='gray'), plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.subplot(325), plt.imshow(scharrx, cmap='gray'), plt.title('Scharr X'), plt.xticks([]), plt.yticks([])
plt.subplot(326), plt.imshow(scharry, cmap='gray'), plt.title('Scharr Y'), plt.xticks([]), plt.yticks([])
plt.show()


在这里插入图片描述

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('./resource/opencv/image/box2.png')


# output dtype = cv2.CV_8U
sobelx8u = cv2.Sobel(img, cv2.CV_8U, 1,0, ksize=5)

# 也可以将参数设置为-1
sobelx8u_n = cv2.Sobel(img, -1, 1, 0, ksize=5)

# output dtype = cv2.CV64F,
sobelx64f = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=5)
abs_sobel64f = np.absolute(sobelx64f)
sobel_8u = np.uint8(abs_sobel64f)

# Scharr X方向
scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)

# Scharr Y方向
scharry = cv2.Scharr(img,cv2.CV_64F,0,1)


plt.subplot(2,3,1), plt.imshow(img, cmap='gray'), plt.title('original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,3,2), plt.imshow(sobelx8u, cmap='gray'), plt.title('Sobel CV_8U'), plt.xticks([]), plt.yticks([])
plt.subplot(2,3,3), plt.imshow(sobel_8u, cmap='gray'), plt.title('Sobel abs(CV_64F)'), plt.xticks([]), plt.yticks([])
plt.subplot(2,3,4), plt.imshow(scharrx, cmap='gray'), plt.title('Scharr X'), plt.xticks([]), plt.yticks([])
plt.subplot(2,3,5), plt.imshow(scharry, cmap='gray'), plt.title('Scharr Y'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/66781.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[保研/考研机试] 括号匹配问题 C++实现

题目描述: 在某个字符串(长度不超过100)中有左括号、右括号和大小写字母;规定(与常见的算数式子一样)任何一个左括号都从内到外与在它右边且距离最近的右括号匹配。写一个程序,找到无法匹配的左括号和右括号,输出原来的字符串&am…

MachineLearningWu_14/P65-P69_Multiclass

x.1 Multiclass多分类问题 对于分类问题,往往指的是二分类问题,而对于二分类的decision boundary较为简单,而实际生活中会有很多问题是多分类问题,例如MNIST手写数字识别, 从特征空间上来看,二分类和多分类…

SpringCloud 尚硅谷 微服务简介以及Eureka使用

写在前面 该系列博客仅用于本人学习尚硅谷课程SpringCloud笔记,其中的错误在所难免,如有错误恳请指正。 官方源码地址:https://github.com/zzyybs/atguigu_spirngcloud2020 什么是SpringCloud Spring Cloud是微服务一站式服务解决方案&…

Segment Anything(SAM) 计算过程

给定输入图像 I ∈ R 3 H W I \in R^{3 \times H \times W} I∈R3HW。给定需要的prompts: M ∈ R 1 H W M \in R^{1 \times H \times W} M∈R1HW,代表图片的前背景信息。 P ∈ R N 2 P \in R^{N \times 2} P∈RN2,其中 N N N 是点的个数…

活动发布会邀请媒体6步走

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 邀请媒体参加活动发布会对信息的传播,企业品牌建设有诸多的好处,今天就与大家分享下邀请媒体参加活动报道的6个步骤: 1. 策划与准备: -明…

vue3 - 使用reactive定义响应式数据进行列表赋值时,视图没有更新的解决方案

文章目录 1,问题2,原因3,解决方案一、再封装一层数据,即定义属性名,在后期赋值的时候,对此属性进行直接赋值三、使用数组的splice来直接更改原数组三、使用 ref 来定义数据 1,问题 在Vue 3.0 中…

ThreadLocal

# ThreadLocal # ThreadLocal 有什么用? 通常情况下,我们创建的变量是可以被任何一个线程访问并修改的。如果想实现每一个线程都有自己的专属本地变量该如何解决呢? JDK 中自带的ThreadLocal类正是为了解决这样的问题。 ThreadLocal类主要…

Vue+Vue Router+TailwindCss+Daisyui部署

一、构建Vue项目 > npm init vuelatest > cd <your-project-name> > npm install > npm run dev 二、设置IDEA JS版本 三、安装Tailwindcss Install Tailwind CSS with Vite - Tailwind CSS npm install -D tailwindcss postcss autoprefixer npx tai…

Titanic细节记录一

目录 chunker header index_col names Series与DataFrame的区别 df.columns del和drop的区别 reset_index loc与iloc的区别 不同的排序方式 sort_values sort_index DataFrame相加 describe函数查看数据基本信息 查看多个列的数据时使用列表 处理缺失值的几种思路 …

【Kubernetes】Kubernetes之kubectl详解

kubectl 一、陈述式资源管理1. 陈述式资源管理方法2. 基本信息查看3. 项目周期管理3.1 创建 kubectl create 命令3.2 发布 kubectl expose命令3.3 更新 kubectl set3.4 回滚 kubectl rollout3.5 删除 kubectl delete 4. kubectl 的发布策略4.1 蓝绿发布4.2 红黑发布4.3 灰度发布…

代码随想录算法训练营第24天| 第七章 回溯算法part01 理论基础、leetcode 77

Part I : 回溯算法基础 背景&#xff1a;一直以来都是半懂不懂的&#xff0c;在逻辑上不难&#xff0c;毕竟属于暴力搜索&#xff1b;在代码上就开始缠绕起来了&#xff0c;自己研究的时候对N皇后问题老是理不清。这次终于在Carl这开始前进啦&#xff01;何为回溯算法&#xf…

爬虫012_字典高级操作_查询_修改_添加_删除和清空_遍历---python工作笔记031

然后来看字典高级,首先 打印某个元素 然后打印的时候注意,如果直接打印的值,在字典中没有就报错 这里要注意不能用点访问

Redis类型检查与命令多态

Redis中用于操作键的命令基本上可以分为两种类型。 其中一种命令可以对任何类型的键执行&#xff0c;比如说DEL命令、EXPIRE命令 、RENAME命令、TYPE命令、OBJECT命令等。 举个例子&#xff0c;以下代码就展示了使用DEL命令来删除三种不同类型的键: # 字符串键 redis> SE…

基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ...................................................................... %fine regular gr…

ApplicationContextInitializer

目录 在何处执行&#xff1f;何时初始化&#xff1f;自己写一个ApplicationContextInitializer 那这个类的设计具体有什么作用呢&#xff1f;&#xff1f;1. DelegatingApplicationContextInitializer2. SharedMetadataReaderFactoryContextInitializer3. ContextIdApplication…

灰度均衡变换之c++实现(qt + 不调包)

1.基本原理 灰度均衡是以累计分布函数变换为基础的直方图修正法&#xff0c;它可以产生一副灰度级分布概率均匀的图像。也就是说&#xff0c;经过灰度均衡后的图像在没一级灰度上像素点的数量相差不大。公式见下图&#xff0c;为灰度值为x的像素点的个数&#xff0c;n为总像素点…

方法区——元空间概述

方法区 不同版本具体实现 标准层面&#xff1a;方法区&#xff08;Method Area&#xff09;具体实现层面&#xff1a; ≤JDK1.6 永久代JDK1.7 永久代仍然存在&#xff0c;但是已经开始提出&#xff1a;去永久代≥JDK1.8元空间&#xff08;Meta Space&#xff09; 永久代概念辨…

Linux6.34 Kubernetes yaml文件详解

文章目录 计算机系统5G云计算第三章 LINUX Kubernetes yaml文件详解一、yaml文件概述1.查看 api 资源版本标签2.写一个yaml文件demo 计算机系统 5G云计算 第三章 LINUX Kubernetes yaml文件详解 一、yaml文件概述 Kubernetes 支持 YAML 和 JSON 格式管理资源对象 JSON 格式…

【网站搭建】开源社区Flarum搭建记录

环境 服务器系统&#xff1a;腾讯云 OpenCloudOS 宝塔版本&#xff1a;免费版8.0.1 Nginx&#xff1a;1.24.0 MySQL&#xff1a;5.7.42 PHP&#xff1a;8.1.21 萌狼蓝天 2023年8月7日 PHP设置 1.安装扩展&#xff1a;flieinfo、opcache、exif 2.解除禁用函数&#xff1a;putenv…

安卓:LitePal操作数据库

目录 一、LitePal介绍 常用方法&#xff1a; 1、插入数据&#xff1a; 2、更新数据&#xff1a; 3、删除数据&#xff1a; 4、查询数据&#xff1a; 二、LitePal的基本用法&#xff1a; 1、集成LitePal&#xff1a; 2、创建LitePal配置文件&#xff1a; 3、创建模型类…