不借助三方平台自主搭建量化回测系统 ——以海龟交易策略为例

 

数量技术宅团队在CSDN学院推出了量化投资系列课程

欢迎有兴趣系统学习量化投资的同学,点击下方链接报名:

量化投资速成营(入门课程)

Python股票量化投资

Python期货量化投资

Python数字货币量化投资

C++语言CTP期货交易系统开发

数字货币JavaScript语言量化交易系统开发


三方平台与自主系统的优劣势对比

在编写量化策略回测时,可以选择使用三方平台(第三方量化平台)或自主平台(自己编写代码)两种方式。它们各自有一些优劣势,下面是它们的对比:

三方平台:

优势:

  1. 简单易用: 大多数三方平台都提供了用户友好的界面和可视化工具,使得策略的构建和回测过程相对容易上手,即使对编程不熟悉的人也可以使用。

  2. 快速回测: 三方平台通常会优化回测引擎,使回测的速度更快,尤其是针对大规模数据进行回测时,可以节省大量时间。

  3. 数据和资料库: 大多数三方平台会提供包括历史市场数据、财务数据和交易数据等在内的资料库,无需自行采集数据,极大地简化了数据处理流程。

  4. 社区和支持: 常用的三方平台拥有活跃的用户社区和技术支持团队,您可以在这里交流经验、寻求帮助,解决问题更加方便。

劣势:

  1. 有限的灵活性: 三方平台的功能和策略构建方法通常受到平台本身的限制,可能无法实现某些较为复杂的量化策略。

  2. 数据安全性: 使用三方平台需要将您的交易数据和策略上传到平台服务器,涉及到数据安全和隐私问题,可能会让一些用户感到担忧。

  3. 成本: 尽管一些三方平台提供免费版,但更强大的功能和服务可能需要付费订阅,长期来看可能会增加成本。

自主平台:

优势:

  1. 灵活性: 使用自主平台编写代码,您可以完全控制策略的逻辑和实现方式,没有受到第三方平台功能的限制,能够实现更加复杂和个性化的策略。

  2. 数据控制: 在自主平台上,您可以控制自己的数据,不需要将数据上传到第三方服务器,有更好的数据隐私和安全控制。

  3. 学习机会: 自主编写代码让您更深入了解量化交易的原理和编程技能,有助于提高技术水平和理解市场。

劣势:

  1. 技术要求: 对编程和量化金融知识要求较高,需要具备相应的技术能力和知识储备,可能不太适合初学者。

  2. 复杂性: 自主编写代码意味着需要从头开始搭建回测框架、处理数据、设计策略等,工作量相对较大,可能耗费更多的时间。

  3. 回测速度: 自主编写的代码在效率上可能不如经过优化的三方平台,尤其在处理大规模数据时。

总的来说,如果对编程不熟悉或者只是想尝试简单的策略朋友,使用三方平台可能更为方便快捷。但是,如果有一定的编程技能,并且希望实现更复杂的量化策略,或者更关注数据隐私和自由度,则自主平台更适合。本期文章,我们就将以海龟交易策略为例,手把手教大家不借助三方平台(除数据源)完全自主搭建一个简单的Python回测系统,堪称量化小白用户的“保姆级教程”。

自主回测系统数据源

在国内市场,有几个常用的量化策略回测数据源,这些数据源提供了历史市场数据和财务数据,供量化投资者用于回测和研究策略。以下是一些常见的中国市场量化策略回测数据源:

  1. Wind(万得): Wind是中国知名的金融数据服务提供商,它提供广泛的金融市场数据,包括股票、债券、期货、指数等数据,同时还提供财务数据、宏观经济数据和新闻等信息。Wind的数据覆盖范围广泛,是中国量化投资者的重要数据来源之一。

  2. 通达信: 通达信是中国股票市场上广泛使用的一种股票交易软件,它也提供历史市场数据供回测使用。通达信的数据通常包含股票的价格、交易量、财务指标等信息。

  3. 聚宽(JoinQuant): 聚宽是一家为量化投资者提供数据服务的公司,它提供了丰富的股票、基金、期货等市场的历史数据和实时数据。聚宽还提供Python编程接口,方便投资者使用Python进行量化策略回测和交易。

  4. 掘金量化(JQData): 掘金量化是另一家专注于量化投资数据服务的公司,提供了股票、期货、指数等市场的历史数据,同时也提供了Python编程接口,方便用户进行自主量化研究和回测。

为降低关注文章朋友的学习成本,本文就将选择免费版Tushare数据源,获取沪深300指数的历史数据。安装免费版Tushare库,以及历史K线数据获取详细介绍,可以参考我们的历史文章:。具体获取数据的代码只需要两行完成:

import tushare as ts
# 获取hs300指数从2015年初到最新的历史数据
df = ts.get_k_data('hs300', start='2015-01-01')

交易策略回测主函数

接下来我们需要构建交易策略回测主函数:这是一个简单的海龟交易策略函数,该函数接受一个包含股票数据的DataFrame作为输入,并返回增加了海龟交易策略信号以及相关计算结果的DataFrame。

# 定义海龟交易策略函数
def turtle_trading(stock_data):
    # 计算20日突破价格
    stock_data['20d_high'] = pd.Series.rolling(stock_data['high'], window=20, center=False).max()
    stock_data['20d_low'] = pd.Series.rolling(stock_data['low'], window=20, center=False).min()
    stock_data['20d_close'] = pd.Series.rolling(stock_data['close'], window=20, center=False).mean()
    stock_data['prev_20d_high'] = stock_data['20d_high'].shift(1)
    stock_data['prev_20d_low'] = stock_data['20d_low'].shift(1)
    stock_data['prev_20d_close'] = stock_data['20d_close'].shift(1)
    stock_data['buy_signal'] = (stock_data['close'] > stock_data['prev_20d_high']) & (stock_data['prev_20d_close'] <= stock_data['prev_20d_high'])
    stock_data['sell_signal'] = (stock_data['close'] < stock_data['prev_20d_low']) & (stock_data['prev_20d_close'] >= stock_data['prev_20d_low'])
    # 计算持仓状态
    stock_data['position'] = None
    stock_data.loc[stock_data['buy_signal'], 'position'] = 1
    stock_data.loc[stock_data['sell_signal'], 'position'] = 0
    stock_data['position'].fillna(method='ffill', inplace=True)
    # 计算每日收益率
    stock_data['daily_return'] = stock_data['close'].pct_change() * stock_data['position'].shift(1)
    # 计算累计收益率
    stock_data['cum_return'] = (1 + stock_data['daily_return']).cumprod()
    return stock_data

海龟交易策略是一种趋势跟随策略,其主要思想是利用历史股价的突破来产生买入和卖出信号。代码对应解锁如下:

  1. 计算20日突破价格:分别计算最近20个交易日的最高价、最低价和收盘价的滚动平均,并记录为20d_high20d_low20d_close

  2. 记录前一个交易日的20日突破价格:通过将20d_high20d_low20d_close的值向后平移一天,记录为prev_20d_highprev_20d_lowprev_20d_close

  3. 产生买入和卖出信号:买入信号为当日收盘价大于前一个交易日的prev_20d_high且前一个交易日的收盘价小于等于prev_20d_high;卖出信号为当日收盘价小于前一个交易日的prev_20d_low且前一个交易日的收盘价大于等于prev_20d_low

  4. 计算持仓状态:根据买入和卖出信号,确定每日的持仓状态,用1表示买入,0表示卖出。

  5. 计算每日收益率:根据持仓状态和当日收盘价计算每日的收益率。

  6. 计算累计收益率:将每日收益率累乘,得到累计收益率。

此外,该函数中使用了pandas的滚动计算和位运算,涉及了数据的平移、填充等操作,所以输入的stock_data DataFrame数据需要包含至少以下列:'high'(最高价)、'low'(最低价)、'close'(收盘价)。当然,这只是一个简单的海龟交易策略示例,实际应用中可能需要更多的调整和改进,例如加入风险控制、手续费和滑点等因素。

接下来是函数调用模块,通过读取数据、调用函数,进行回测:

# 读取数据
df.set_index('date', inplace=True)
df.index = pd.to_datetime(df.index)
# 回测海龟交易策略
df = turtle_trading(df)

首先将DataFrame的索引设置为日期,并将日期列转换为Datetime类型。接下来,调用了之前定义的turtle_trading函数,对DataFrame执行了海龟交易策略的回测操作。

其中,df是包含股票数据的DataFrame,按照之前提供的海龟交易策略函数turtle_trading的定义,函数会在df中增加一些列来表示策略信号和回测结果,包括买入信号(buy_signal)、卖出信号(sell_signal)、持仓状态(position)、每日收益率(daily_return)和累计收益率(cum_return)。

回测过程是基于历史数据执行的,因此需要确保df中包含足够的历史股票数据来进行回测。回测的结果将会存储在df中,可以通过查看增加的列来了解策略在历史数据上的表现。

计算回测指标

执行完回测,下一步我们需要做的是分析这个策略的表现,这个分析过程主要是通过计算回测指标进行评价:

# 计算回测指标
annual_return = (df['cum_return'][-1]) ** (252/len(df.index)) - 1
daily_return = df['daily_return'].mean()
daily_volatility = df['daily_return'].std()
sharpe_ratio = (annual_return - 0.03) / daily_volatility
max_drawdown = (df['cum_return'].max() - df['cum_return'].min()) / df['cum_return'].max()
print('年化收益率:{:.2%}'.format(annual_return))
print('日均收益率:{:.2%}'.format(daily_return))
print('日收益率波动率:{:.2%}'.format(daily_volatility))
print('夏普比率:{:.2f}'.format(sharpe_ratio))
print('最大回撤:{:.2%}'.format(max_drawdown))

以上段落代码计算了回测指标,用于衡量海龟交易策略的表现。下面解释一下每个指标的含义:

年化收益率(Annual Return): 表示策略在一年内实现的平均每日收益率。根据回测结果的累计收益率,将其指数化到一年的时间跨度内,通过以下公式计算:

annual_return = (cum_return[-1]) ** (252 / len(df.index)) - 1

其中,252是一年中交易日的数量,len(df.index)表示回测数据的总交易日数。

日均收益率(Daily Return): 表示策略在回测期间的平均每日收益率。计算方式为每日收益率的简单平均。

daily_return = df['daily_return'].mean()

日收益率波动率(Daily Volatility): 衡量策略每日收益率的波动程度。通常用标准差来度量,标准差越大,波动性越高。

daily_volatility = df['daily_return'].std()

夏普比率(Sharpe Ratio): 是一种风险调整后的回报率指标,用于衡量每承担一单位风险,能够获得多少超额回报。夏普比率越高,说明单位风险下的回报越高。

sharpe_ratio = (annual_return - 0.03) / daily_volatility

假设无风险利率为3%,这里将其减去后再除以波动率。

最大回撤(Max Drawdown): 表示策略在历史回测过程中,任意时刻从最高点到最低点的最大损失。计算方式为最大回撤幅度除以最高点的累计收益率。

max_drawdown = (cum_return.max() - cum_return.min()) / cum_return.max()

回测指标的计算能够帮助您对所开发策略的表现进行评估和比较。然而,仅仅依赖回测指标并不能完全代表策略的优劣,实际应用中还需要考虑其他因素,如交易成本、滑点、风险管理等,以及对不同市场环境的适应性。因此,在使用回测指标时,需要综合考虑策略的整体表现和风险情况。

输出回测图

最后一步,我们将此前回测得到的结果,采用可视化的方式展现处理,即输出回测图模块:

# 输出回测图
import matplotlib.pyplot as plt
plt.plot(df['cum_return'])
plt.title('Turtle Trading Strategy Backtest')
plt.xlabel('Date')
plt.ylabel('Cumulative Return')
plt.show()

这段代码使用matplotlib库输出了回测图,展示了海龟交易策略的累计收益曲线。我们来解释一下代码的功能:

  1. plt.plot(df['cum_return']):通过plt.plot()函数绘制累计收益曲线,df['cum_return']是策略回测中计算的累计收益率的数据列。

  2. plt.title('Turtle Trading Strategy Backtest'):设置图表的标题为"Turtle Trading Strategy Backtest"。

  3. plt.xlabel('Date'):设置X轴的标签为"Date",即日期。

  4. plt.ylabel('Cumulative Return'):设置Y轴的标签为"Cumulative Return",即累计收益率。

  5. plt.show():显示绘制的回测图。

运行此段代码将在图形窗口中显示海龟交易策略的累计收益曲线。通过该曲线(下图),您可以直观地看到策略的收益变化情况,以及可能的峰值和谷底。请注意,该图表只是回测结果的可视化展示,不能代替对策略的全面分析和评估。

以及在回测指标计算模块计算得到的回测指标数值,同样在运行过程中将其打印出来:

到这里,我们就完成了一个简单自主搭建的海龟交易策略回测系统,它包括回测数据获取、回测函数构建与调用、回测指标计算,以及输出回测图,四个主要步骤。电脑前的你,Get到回测系统的设计小技能了吗?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/666190.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vue 2.0使用Vue-count-to给数字添加增长动画

在开发后台管理系统时&#xff0c;时常会遇到数据汇总&#xff0c;为了页面展示更生动&#xff0c;用户体验更好&#xff0c;通常会对汇总的数字加一个逐步递增动画。 实现这个效果一般是用的 Vue-count-to这个插件&#xff0c;这是一款简单好用的一个数字滚动插件&#xff0c;…

前端传String字符串 后端使用enun枚举类出现错误

情况 前端 String 后端 enum 前端 后端 报错 2024-05-31T21:47:40.61808:00 WARN 21360 --- [nio-8080-exec-6] .w.s.m.s.DefaultHandlerExceptionResolver : Resolved [org.springframework.web.method.annotation.MethodArgumentTypeMismatchException: Failed to con…

OSPF状态机+SPF算法

OSPF状态机 1.点到点网络类型 down-->init-->(前提为可以建立邻接)exstart——>exchange-->若查看邻接的DBD 目录后发现不用进行LSA 直接进入ful。若查看后需要进行查询、应答先进入loading&#xff0c;在查询应答完后再进入 fuIl: 2.MA网络类型 down --&g…

Linux下配置Pytorch

1.Anaconda 1.1虚拟环境创建 2.Nvidia驱动 3.CUDA驱动安装 4.Pytorch安装 具体的步骤如上&#xff1a;可参考另一位博主的博客非常详细&#xff1a; Linux服务器配置PythonPyTorchCUDA深度学习环境_linux cuda环境配置-CSDN博客https://blog.csdn.net/NSJim/article/detai…

民国漫画杂志《时代漫画》第35期.PDF

时代漫画35.PDF: https://url03.ctfile.com/f/1779803-1248636125-ee3a2b?p9586 (访问密码: 9586) 《时代漫画》的杂志在1934年诞生了&#xff0c;截止1937年6月战争来临被迫停刊共发行了39期。 ps: 资源来源网络!

微信小程序-页面导航-导航传参

1.声明式导航传参 navigator组件的url属性用来指定将要跳转到的页面的路径&#xff0c;同时&#xff0c;路径的后面还可以携带参数&#xff1a; &#xff08;1&#xff09;参数与路径之间使用 ? 分割 &#xff08;2&#xff09;参数键与参数值用 相连 &#xff08;3&…

LeetCode503:下一个更大元素Ⅱ

题目描述 给定一个循环数组 nums &#xff08; nums[nums.length - 1] 的下一个元素是 nums[0] &#xff09;&#xff0c;返回 nums 中每个元素的 下一个更大元素 。 数字 x 的 下一个更大的元素 是按数组遍历顺序&#xff0c;这个数字之后的第一个比它更大的数&#xff0c;这…

CSwin-PNet 新的医学图像分割网络

很长时间没有看到一些比较传统的医学图像分割网络了&#xff0c;2022年&#xff0c;来自哈尔滨工业大学的研究团队在Expert Systems With Applications. 期刊上发表了题为《CSwin-PNet: A CNN-Swin Transformer combined pyramid network for breast lesion segmentation in ul…

Web前端三大主流框:React、Vue 和 Angular

在当今快速发展的 Web 开发领域&#xff0c;选择合适的前端框架对于项目的成功至关重要。React、Vue 和 Angular 作为三大主流前端框架&#xff0c;凭借其强大的功能和灵活的特性&#xff0c;赢得了众多开发者的青睐。本文将对这三大框架进行解析&#xff0c;帮助开发者了解它们…

二叉树的前序遍历(oj题)

一、题目链接&#xff1a; https://leetcode-cn.com/problems/binary-tree-preorder-traversal/ 二、题目思路 先调用二叉树节点计算函数&#xff0c;得到二叉树的总结点数。然后申请该大小的数组空间。 再使用前序遍历&#xff0c;依次访问每个结点的数据&#xff0c;依次存…

Linux —— MySQL操作(1)

一、用户与权限管理 1.1 创建与赋予权限 create user peter% identified by 123465 # 创建用户 peter&#xff0c;# %&#xff1a;允许所有用户登录这个用户访问数据库 刚创建的新用户是什么权限都没有&#xff0c;需要赋予权限 grant select on mysql.* to peter%; # 赋予…

springboot编写日志环境搭建过程

AOP记录日志 AOP记录日志的主要优点包括&#xff1a; 1、低侵入性&#xff1a;AOP记录日志不需要修改原有的业务逻辑代码&#xff0c;只需要新增一个切面即可。 2、统一管理&#xff1a;通过AOP记录日志可以将各个模块中需要记录日志的部分进行统一管理&#xff0c;降低了代…

【设计模式】JAVA Design Patterns——Facade(外观模式)

&#x1f50d;目的 为一个子系统中的一系列接口提供一个统一的接口。外观定义了一个更高级别的接口以便子系统更容易使用。 &#x1f50d;解释 真实世界例子 一个金矿是怎么工作的&#xff1f;“嗯&#xff0c;矿工下去然后挖金子&#xff01;”你说。这是你所相信的因为你在使…

本地电脑通过远程服务器进行ssh远程转发

☆ 问题描述 想要实现这样一个事情&#xff1a; 我想要提供一个ai服务&#xff0c;但是租计算服务器太贵了&#xff0c;我自己有配的台式机。那么用我的台式机作为服务器&#xff0c;租一个服务器做端口转发可行吗&#xff1f; ★ 解决方案 1. 修改服务器上的sshd_config文件…

GCN 代码解析(一) for pytorch

Graph Convolutional Networks 代码详解 前言一、数据集介绍二、文件整体架构三、GCN代码详解3.1 utils 模块3.2 layers 模块3.3 models 模块3.4 模型的训练代码 总结 前言 在前文中&#xff0c;已经对图卷积神经网络&#xff08;Graph Convolutional Neural Networks, GCN&am…

Writerside生成在线帮助文档或用户手册软件基础使用教程

Writerside是JetBrains出的一个技术文档工具&#xff0c;既能用在JetBrains IDE上&#xff0c;也能单独用。它能帮你轻松写、建、测、发技术文档&#xff0c;像产品说明、API参考、开发指南等都能搞定。 特点&#xff1a; 文档即代码&#xff1a;它让你像管代码一样管文档&…

飞腾+FPGA多U多串全国产工控主机

飞腾多U多串工控主机基于国产化飞腾高性能8核D2000处理器平台的国产自主可控解决方案&#xff0c;搭载国产化固件,支持UOS、银河麒麟等国产操作系统&#xff0c;满足金融系统安全运算需求&#xff0c;实现从硬件、操作系统到应用的完全国产、自主、可控&#xff0c;是国产金融信…

趋势分析:2024年 2D CAD 在工业工程软件中的市场现状

文章概览 CAD发展趋势 一、现状 二、2D CAD在工业工程规划软件中的作用 三、工业工程师使用什么软件&#xff1f; 四、DraftSight&#xff1a;功能强大的工业工程软件 实际工业工程应用 一、ERIKS&#xff1a;使用 DraftSight 管理大量 2D 图纸 二、Sealed Air&#xff1…

蓝桥杯2024国赛--备赛刷题题单

1.游戏&#xff08;单调队列&#xff09; 注意如果结果是分数&#xff0c;直接设置变量为double&#xff0c;最好不要使用把int类型乘1.0变成分数来计算。 #include <iostream> #include <queue> using namespace std; const int N1e510; //滑动窗口大小为k,最大值…

Windows10专业版系统安装Hyper-V虚拟机软件

Windows10专业版系统安装Hyper-V虚拟机软件 适用于在Windows10专业版系统安装Hyper-v虚拟机软件。 1. 安装准备 1.1 安装平台 Windows 10 1.2. 软件信息 软件名称软件版本安装路径windowswindows 10 专业版Hyper-vHyper-v 2. Hyper-v搭建 2.1打开cmd软件 2.2打开控制面…