Halcon 光度立体 缺陷检测

一、概述

halcon——缺陷检测常用方法总结(光度立体) - 唯有自己强大 - 博客园 (cnblogs.com)

        上周去了康耐视的新品发布会,我真的感觉压力山大,因为VM可以实现现在项目中的80% 的功能,感觉自己的不久就要失业了。同时康耐视开始布局工业的每个方面,生成一个完整的生态链,国内很喜欢搞某某一条龙服务。相机方面出了很多尤其是3D的,还有2.5D的相机,精度方面不好说,他们说Z方向的重复性精度可以达到0.15u,我们没有使用过,我对此保持怀疑,因为我用过的精度最高的是基恩士的的0.2u的,我尊重日本企业的严谨性和专业性,今天我看了一下那个halcon 的光度立体法,是2.5D 的。

光度立体法主要是表面检测的,在检测缺口、凹痕,适用于检测金属物料。在采集图片的时候最好是使用灰度图,至少是3张 最好是4张图像

光度立体的局限性:

  • 一方面假定相机是无畸变成像,也就是说必须使用远心镜头或者长焦镜头。
  • 另一方面假定每一个光源发射的光束都是平行且均匀的,也就是说必须使用具有均匀强度的远心照明光源,或者使用远距离的点光源代替。

此外,物体必须具有朗伯反射特性,即它必须以漫反射的方式反射入射光。有镜面反射的物体或者区域(镜子或者光滑的表面)不能使用此方法,会得到一个错误的结果

光照方向说明

安装说明:

    1、远心镜头必须与被测试的物体表面垂直按照,在采集多张图片的时候一定要保证相机和物体不动,对于采集至少三张的灰度图像,其每次取像的照明方向必须改变(相对于相机)。

    2、在采集的多张图像中的每付图像照明方向必定是制定Slants和Tilts两个参数角度

Slants:

表示光束方向与相机中轴线的夹角,一般是30-60度之间

Tilts:

Tilt角度通常都是均匀分布在被测物体周围,比如3个方向打光,Tilt角度应该是[0,120,240]OR[0,120,-120],4个方向打光是[0,90,180,-90]。需要注意的是,打光方向不能相同,否则重构的图像结果达不到预期效果

二、算子解释

  •  photometric_stereo (根据光度立体技术重建曲面)

*参数列表:
*Images(in)//输入灰度图像(4张)
*HeightField(out)//返回重建高度信息图
*Gradient(out)//返回表面的梯度信息图
*Albedo(out)//返回表面的反射率信息图
*Slant//光源光线与摄像机光轴的夹角
*Tilt//光源光线投影与被测物主轴的夹角
*ResultType//请求结果类型(高度场/梯度场/反射率)
*ReconstructionMethod//重建方法类型
*GenParamName//一般参数名称
*GenParamValue// 一般参数设置

                   *   重建高度信息图 表面的梯度信息图 表面的反射率信息图 光源光线与摄像机光轴的夹角  光源光线投影与被测物主轴的夹角  请求结果类型(高度场/梯度场/反射率)  重建方法类型(迫松重建)
photometric_stereo (Images, HeightField,    Gradient,      Albedo,          Slants,                  Tilts,                          ResultType,                     'poisson',          [],        [])
  • derivate_vector_field(处理photometric_stereo 函数输出的重建后的梯度、反射率、以及高度场信息图)

*derivate_vector_field    处理photometric_stereo 函数输出的重建后的梯度、反射率、以及高度场信息图  
*将向量场的分量与高斯函数的导数进行卷积,并计算由此得到的各种特征。
*在光度立体项目中,专门用于处理photometric_stereo 函数输出的重建后的梯度、反射率、以及高度场图像。
*参数列表:
*VectorField(in)// 梯度场图像
*Result(out)    // 返回平均曲率场图像
*Sigma(in)      // 高斯系数
                                 *如果在Sigma中传递一个值,那么在列和行方向上的平滑量是相同的。
                                 *如果在Sigma中传递两个值,第一个值指定列方向的平滑量,第二个值指定行方向的平滑量。
*Component(in)  //组件计算   
                                 *curl,向量场的旋度。旋度的一个应用是分析光流场。旋度是如果向量场是流体,小船会旋转多少。
                                 *divergence,向量场的散度。“divergence”的一个应用是分析光流场。打个比方,如果向量场是流体,散度就是源和汇的位置。
                                 *mean_curvature,当输入向量场 VectorField为梯度场时,下垫面的平均曲率H。用于处理photometric_stereo返回的向量场。
                                 *gauss_curvature,当输入向量场 VectorField 为梯度场时,下垫面的高斯曲率K。用于处理photometric_stereo返回的向量场。
                                 
                                 
                                    
derivate_vector_field (Gradient, Curl, 1, 'curl')

 

三、缺陷检测

反射率信息图

思路

1、不同角度采集4张灰度图,设置不同的角度参数 Slants   Tilts
2、photometric_stereo  ,返回不同的图 重建高度信息图 表面的梯度信息图 表面的反射率信息图
3、得到反射率信息图 然后利用blob 分析进行缺陷检测


*思路:
* 1、不同角度采集4张灰度图,设置不同的角度参数 Slants   Tilts
* 2、photometric_stereo  ,返回不同的图 重建高度信息图 表面的梯度信息图 表面的反射率信息图
* 3、得到反射率信息图 然后利用blob 分析进行缺陷检测


dev_close_window ()
dev_open_window (0, 0, 640, 480, 'black', WindowHandle)
set_display_font (WindowHandle, 14, 'mono', 'true', 'false')


* Part 1利用反射率图像检测皮革表面缺陷
read_image (Images, 'photometric_stereo/leather_1_0' + [1:4])
write_image (Images, 'tiff', 0, 'D:/1.tiff')
** 展示不同方向光源成像图像
for I := 1 to 4 by 1
    Message := 'Sample 1: Acquire image ' + I + ' of 4'
    select_obj (Images, ObjectSelected, I)
    dev_display (ObjectSelected)
    disp_message (WindowHandle, Message, 'window', 12, 12, 'black', 'true')
   * wait_seconds (0.5)
endfor
stop ()
* 应用光度立体法生成的反射率图进行缺陷检测
Tilts := [6.1,95.0,-176.1,-86.8]
Slants := [41.4,42.6,41.7,40.9]
              * 梯度场     反射率
ResultType := ['gradient','albedo']

*参数列表:
*Images(in)//输入灰度图像(4张)
*HeightField(out)//返回重建高度信息图
*Gradient(out)//返回表面的梯度信息图
*Albedo(out)//返回表面的反射率信息图
*Slant//光源光线与摄像机光轴的夹角
*Tilt//光源光线投影与被测物主轴的夹角
*ResultType//请求结果类型(高度场/梯度场/反射率)
*ReconstructionMethod//重建方法类型
*GenParamName//一般参数名称
*GenParamValue// 一般参数设置

                   *   重建高度信息图 表面的梯度信息图 表面的反射率信息图 光源光线与摄像机光轴的夹角  光源光线投影与被测物主轴的夹角  请求结果类型(高度场/梯度场/反射率)  重建方法类型(迫松重建)
photometric_stereo (Images, HeightField,    Gradient,      Albedo,          Slants,                  Tilts,                          ResultType,                     'poisson',          [],        [])

* 显示反射率图
dev_display (Albedo)

*检测缺陷   反射率的基础上进行缺陷检测
var_threshold (Albedo, Region, 15, 15, 0.4, 0.4, 'light')
connection (Region, ConnectedRegions)
select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 10, 99999)
union1 (SelectedRegions, RegionUnion)
closing_circle (RegionUnion, RegionClosing, 3.5)
connection (RegionClosing, Defects)
area_center (Defects, Area, Row, Column)
gen_circle (Circle, Row, Column, gen_tuple_const(|Row|,sqrt(Area) + 30))
*显示缺陷
dev_display (Albedo)
dev_set_color ('red')
dev_set_draw ('margin')
dev_set_line_width (4)
dev_display (Circle)




梯度信息图

思路

1、不同角度采集4张灰度图,设置不同的角度参数 Slants   Tilts
2、photometric_stereo  ,返回不同的图 重建高度信息图 表面的梯度信息图 表面的反射率信息图
3、得到梯度信息图然后利用blob 分析进行缺陷检测


*思路:
* 1、不同角度采集4张灰度图,设置不同的角度参数 Slants   Tilts
* 2、photometric_stereo  ,返回不同的图 重建高度信息图 表面的梯度信息图 表面的反射率信息图
* 3、得到梯度信息图然后利用blob 分析进行缺陷检测

* Part 2 利用梯度图像检测皮革表面缺陷
read_image (Images, 'photometric_stereo/leather_2_0' + [1:4])
for I := 1 to 4 by 1
    Message := 'Sample 2: Acquire image ' + I + ' of 4'
    select_obj (Images, ObjectSelected, I)
    dev_display (ObjectSelected)
    disp_message (WindowHandle, Message, 'window', 12, 12, 'black', 'true')
    *wait_seconds (0.5)
     stop()
endfor

* 应用光度立体法生成的反射率图
photometric_stereo (Images, HeightField, Gradient, Albedo, Slants, Tilts, ResultType, 'poisson', [], [])
*对反射率图二值化(发现无法二值化)
threshold (Albedo, Region1, 128, 255)
* 显示反射率图
dev_display (Albedo)






*derivate_vector_field    处理photometric_stereo 函数输出的重建后的梯度、反射率、以及高度场信息图  
*将向量场的分量与高斯函数的导数进行卷积,并计算由此得到的各种特征。
*在光度立体项目中,专门用于处理photometric_stereo 函数输出的重建后的梯度、反射率、以及高度场图像。
*参数列表:
*VectorField(in)// 梯度场图像
*Result(out)    // 返回平均曲率场图像
*Sigma(in)      // 高斯系数
                                 *如果在Sigma中传递一个值,那么在列和行方向上的平滑量是相同的。
                                 *如果在Sigma中传递两个值,第一个值指定列方向的平滑量,第二个值指定行方向的平滑量。
*Component(in)  //组件计算   
                                 *curl,向量场的旋度。旋度的一个应用是分析光流场。旋度是如果向量场是流体,小船会旋转多少。
                                 *divergence,向量场的散度。“divergence”的一个应用是分析光流场。打个比方,如果向量场是流体,散度就是源和汇的位置。
                                 *mean_curvature,当输入向量场 VectorField为梯度场时,下垫面的平均曲率H。用于处理photometric_stereo返回的向量场。
                                 *gauss_curvature,当输入向量场 VectorField 为梯度场时,下垫面的高斯曲率K。用于处理photometric_stereo返回的向量场。
                                 
                                 
                                    
derivate_vector_field (Gradient, Curl, 1, 'curl')



*derivate_gauss.hdev
*derivate_gauss (Image, ImageGauss, 3, 'none')
* 将一个图像与高斯函数的导数进行卷积。  效果与FFT进行高斯滤波差不多。
*主要的区别是边界处理:FFT的定义假设信号是周期性的,因此边界处理是循环的延续。与此相反,derivate_gauss在图像边界使用灰度值的镜像。
*通过FFT进行过滤的速度已经快于在Sigma=3(排除创建过滤器的时间)中使用derivate_gauss。这种优势随着Simag的增大而变得更加明显。    
*'none' 仅使用平滑
*'x' 沿X的一阶导数
derivate_gauss (Curl, CurlGradient, 1, 'gradient')// 将一个图像与高斯函数的导数进行卷积。  效果与FFT进行高斯滤波差不多。
* 显示梯度图
dev_display (CurlGradient)
Message := 'Changes in the gradient curl'
disp_message (WindowHandle, Message, 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()

* 用梯度图寻找缺陷
threshold (CurlGradient, Region, 0, 0.01)
*
rank_region (Region, RegionCount, 10, 10, 30)//归类区域
connection (RegionCount, ConnectedRegions)
select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 2000, 99999)
union1 (SelectedRegions, RegionUnion)
rank_region (RegionUnion, RegionCount1, 25, 25, 170)
connection (RegionCount1, NoTextured)

* 显示
dev_display (Albedo)
dev_set_draw ('margin')
dev_set_color ('red')
dev_set_line_width (3)
dev_display (NoTextured)
disp_message (WindowHandle, 'Non-textured areas on leather', 'window', 12, 12, 'black', 'true')
stop ()

四、洗发水表面检测 

思路:

梯度信息图来检测

 inspect_shampoo_label_photometric_stereo.hdev



*思路 :
* inspect_shampoo_label_photometric_stereo.hdev
dev_close_window ()
dev_update_off ()
dev_open_window (0, 0, 640, 512, 'black', WindowHandle)
set_display_font (WindowHandle, 14, 'mono', 'true', 'false')
Message := 'Inspect the label of a shampoo bottle'
Message[1] := 'using photometric stereo. In this case four'
Message[2] := 'different light orientations were used.'
disp_message (WindowHandle, Message, 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()
* 
* Show input images with different illumination
read_image (Images, 'photometric_stereo/shampoo_label_0' + [1:4])
for I := 1 to 4 by 1
    Message := 'Acquire image ' + I + ' of 4'
    select_obj (Images, ObjectSelected, I)
    dev_display (ObjectSelected)
    disp_message (WindowHandle, Message, 'window', 12, 12, 'black', 'true')
    wait_seconds (0.5)
endfor
* 
* Apply photometric stereo to determine the albedo
* and the surface gradient.
Tilts := [6.1,95.0,-176.1,-86.8]
Slants := [41.4,42.6,41.7,40.9]
ResultType := ['gradient','albedo']
photometric_stereo (Images, HeightField, Gradient, Albedo, Slants, Tilts, ResultType, 'poisson', [], [])
* 
* Display the albedo image
dev_display (Albedo)
disp_message (WindowHandle, 'Albedo image', 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()
* 
* Calculate the gaussian curvature of the surface
* using the gradient field as input for the operator
* derivate_vector_field.
* Defects are usually easy to detect in the curvature image.
derivate_vector_field (Gradient, MeanCurvature, 1.0, 'mean_curvature')
* 
* Detect defects
* 
* Segment the tablet areas in the curvature image
threshold (MeanCurvature, Region, -10, -0.07)
opening_circle (Region, RegionOpening, 1)
connection (RegionOpening, ConnectedRegions)
select_shape (ConnectedRegions, Defects, 'area', 'and', 50, 99999)
shape_trans (Defects, Circle, 'outer_circle')
* Display the defects in curvature image
dev_set_draw ('margin')
dev_set_color ('red')
dev_set_line_width (2)
dev_display (MeanCurvature)
dev_display (Circle)
Message := 'The defect can easily be detected'
Message[1] := 'in the surface curvature image'
disp_message (WindowHandle, Message, 'window', 12, 12, 'black', 'true')
stop ()
* Display the defects in the albedo image
dev_set_draw ('margin')
dev_set_color ('red')
dev_display (Albedo)
dev_display (Circle)
disp_message (WindowHandle, 'Defect in albedo image', 'window', 12, 12, 'black', 'true')

我用反射率的图做了,是达不到这个效果的

五、药片缺陷检测

* Initialization
dev_close_window ()
dev_update_off ()
dev_open_window (0, 0, 512, 512, 'black', WindowHandle)
set_display_font (WindowHandle, 14, 'mono', 'true', 'false')
Message := 'Inspect the backside of a blister'
Message[1] := 'using photometric stereo. In this case four'
Message[2] := 'different light orientations were used.'
disp_message (WindowHandle, Message, 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()
* 
* Show input images with different illumination
read_image (Images, 'photometric_stereo/blister_back_0' + [1:4])
for I := 1 to 4 by 1
    Message := 'Acquire image ' + I + ' of 4'
    select_obj (Images, ObjectSelected, I)
    dev_display (ObjectSelected)
    disp_message (WindowHandle, Message, 'window', 12, 12, 'black', 'true')
    wait_seconds (0.5)
endfor
stop ()
* 
* Apply photometric stereo to determine the albedo
* and the surface gradient.
Tilts := [6.1,95.0,-176.1,-86.8]
Slants := [41.4,42.6,41.7,40.9]
ResultType := ['gradient','albedo']
photometric_stereo (Images, HeightField, Gradient, Albedo, Slants, Tilts, ResultType, 'poisson', [], [])
* 
* Display the albedo image
dev_display (Albedo)
disp_message (WindowHandle, 'Albedo image', 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()
* 
* Calculate the gaussian curvature of the surface
* using the gradient field as input for the operator
* derivate_vector_field.
* Defects are usually easy to detect in the curvature image.
derivate_vector_field (Gradient, GaussCurvature, 1, 'gauss_curvature')
* 
* Detect defects
* 
* Segment the tablet areas in the curvature image
regiongrowing (GaussCurvature, Regions, 1, 1, 0.001, 250)
select_shape (Regions, TabletRegions, ['width','height'], 'and', [150,150], [200,200])
shape_trans (TabletRegions, TabletRegions, 'convex')
union1 (TabletRegions, TabletRegions)
erosion_circle (TabletRegions, TabletRegions, 3.5)
* Search for defects inside the tablet areas
reduce_domain (GaussCurvature, TabletRegions, ImageReduced)
abs_image (ImageReduced, ImageAbs)
threshold (ImageAbs, Region, 0.03, 255)
closing_circle (Region, RegionClosing, 10.5)
connection (RegionClosing, ConnectedRegions)
select_shape (ConnectedRegions, Defects, 'area', 'and', 10, 99999)
area_center (Defects, Area, Row, Column)
gen_circle (Circle, Row, Column, gen_tuple_const(|Row|,20.5))
* Display the defects in curvature image
dev_set_draw ('margin')
dev_set_color ('red')
dev_set_line_width (2)
dev_display (GaussCurvature)
dev_display (Circle)
Message := 'The defect can easily be detected'
Message[1] := 'in the surface curvature image'
disp_message (WindowHandle, Message, 'window', 12, 12, 'black', 'true')
stop ()
* Display the defects in the albedo image
dev_set_draw ('margin')
dev_set_color ('red')
dev_display (Albedo)
dev_display (Circle)
disp_message (WindowHandle, 'Defect in albedo image', 'window', 12, 12, 'black', 'true')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/665757.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于Python的校园预约打印网站的实现

基于Python的校园预约打印网站的实现 开发语言:Python 数据库:MySQL所用到的知识:Django框架工具:pycharm、Navicat、Maven 系统功能实现 注册 新用户首先要进行注册信息填写,填写完成以后进行登录即可使用此网站 打印社 分别有…

vue3 前端实现导出下载pdf文件

这样的数据实现导出 yourArrayBufferOrByteArray 就是后端返回数据 // 创建Blob对象const blob new Blob([new Uint8Array(res)], { type: application/pdf })// 创建一个表示该Blob的URLconst url URL.createObjectURL(blob);// 创建一个a标签用于下载const a document.cr…

使用Redis缓存实现短信登录逻辑,手机验证码缓存,用户信息缓存

引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency> 加配置 spring:redis:host: 127.0.0.1 #redis地址port: 6379 #端口password: 123456 #密码…

三十二篇:转化决策为行动:探索决策支持系统的深层价值

转化决策为行动&#xff1a;探索决策支持系统的深层价值 1. DSS的精髓&#xff1a;定义与核心功能 1.1 定义与作用 在现代商业的快速演变中&#xff0c;决策支持系统&#xff08;Decision Support Systems, DSS&#xff09;已成为企业获得竞争优势的重要工具。DSS是一种利用先…

全国产飞腾模块麒麟信安操作系统安全漏洞

1、背景介绍 目前在全国产飞腾模块上部署了麒麟信安操作系统&#xff0c;经第三方机构检测存在以下漏洞 操作系统版本为 内核版本为 openssh版本为 2、openssh CBC模式漏洞解决 首先查看ssh加密信息 nmap --script "ssh2*" 127.0.0.1 | grep -i cbc 可以通过修改/…

Elasticsearch 认证模拟题 - 5

一、题目 .在集群上有一个索引 food_ingredient&#xff0c;搜索需要满足以下要求&#xff1a; 三个字段 manufacturer&#xff0c;name&#xff0c;brand 都能匹配到文本 cake mix高亮 字段 name&#xff0c;并加标签排序&#xff0c;对字段 brand 正序&#xff0c;_score 降…

快手发布大模型产品“可图”,超20种创新AI图像玩法限免上线

近日&#xff0c;快手自研大模型产品“可图”&#xff08;Kolors&#xff09;正式对外开放&#xff0c;支持文生图和图生图两类功能&#xff0c;已上线20余种AI图像玩法。目前&#xff0c;用户可以通过“可图大模型”官方网站和微信小程序&#xff0c;免费使用各项AI图像功能。…

12k Star!Continue:Github Copilot 开源本地版、开发效率和隐私保护兼得、丰富功能、LLM全覆盖!

原文链接&#xff1a;&#xff08;更好排版、视频播放、社群交流、最新AI开源项目、AI工具分享都在这个公众号&#xff01;&#xff09; 12k Star&#xff01;Continue&#xff1a;Github Copilot 开源本地版、开发效率和隐私保护兼得、丰富功能、LLM全覆盖&#xff01; &…

结构设计模式 - 代理设计模式 - JAVA

代理设计模式 一. 介绍二. 代码示例2.1 定义 CommandExecutor 类2.2 定义 CommandExecutorProxy代理类2.3 模拟客户端2.4 测试结果 三. 结论 前言 这是我在这个网站整理的笔记,有错误的地方请指出&#xff0c;关注我&#xff0c;接下来还会持续更新。 作者&#xff1a;神的孩子…

基础—SQL—DQL(数据查询语言)分组查询

一、引言 分组查询的关键字是&#xff1a;GROUP BY。 二、DQL—分组查询 1、语法 SELECT 字段列表 FROM 表名 [ WHERE 条件 ] GROUP BY 分组字段名 [ HAVING 分组后过滤条件 ]; 注意&#xff1a; 1、[ ] 里的内容可以有可以没有。 2、这条SQL语句有两块指定条件的地方&#…

k8s的ci/cd实践之旅

书接上回k8s集群搭建完毕&#xff0c;来使用它强大的扩缩容能力帮我们进行应用的持续集成和持续部署&#xff0c;整体的机器规划如下&#xff1a; 1.192.168.8.156 搭建gitlab私服 docker pull gitlab/gitlab-ce:latest docker run --detach --hostname 192.168.8.156 --publ…

如何在Windows 10上更改默认系统字体,这里有详细步骤

Windows 10的默认系统字体Segoe UI看起来相当不错。但是,如果你有更好的替代品,你可以更改Windows 10 PC上的默认系统字体。我们将向你展示如何执行此操作。 如何使用注册表编辑器更改默认系统字体 在撰写本文时,“设置”和“控制面板”都没有更改默认系统字体的选项。这意…

【评价类模型】熵权法

1.客观赋权法&#xff1a; 熵权法是一种客观求权重的方法&#xff0c;所有客观求权重的模型中都要有以下几步&#xff1a; 1.正向化处理&#xff1a; 极小型指标&#xff1a;取值越小越好的指标&#xff0c;例如错误率、缺陷率等。 中间项指标&#xff1a;取值在某个范围内较…

电子阅览室能给孩子做什么

电子阅览室为孩子提供了很多活动和资源&#xff0c;可以为他们提供以下服务&#xff1a; 1. 提供电子书籍和儿童读物&#xff1a;电子阅览室通常提供大量的电子书籍和儿童读物&#xff0c;供孩子选择阅读。 2. 提供儿童学习资源&#xff1a;专久智能电子阅览室可以提供各种学习…

HarmonyOS 鸿蒙应用开发( 五、快速实现ArkUI页面底部导航Tabs)

当页面信息较多时&#xff0c;为了让用户能够聚焦于当前显示的内容&#xff0c;需要对页面内容进行分类&#xff0c;提高页面空间利用率。Tabs组件可以在一个页面内快速实现视图内容的切换&#xff0c;一方面提升查找信息的效率&#xff0c;另一方面精简用户单次获取到的信息量…

神经网络与深度学习——第14章 深度强化学习

本文讨论的内容参考自《神经网络与深度学习》https://nndl.github.io/ 第14章 深度强化学习 深度强化学习 强化学习&#xff08;Reinforcement Learning&#xff0c;RL&#xff09;&#xff0c;也叫增强学习&#xff0c;是指一类从与环境交互中不断学习的问题以及解决这类问题…

关于MD5

首先还是介绍一下关于md5的基本信息&#xff1a; MD5&#xff08;Message Digest Algorithm 5&#xff09;是一种常用的哈希函数&#xff0c;用于产生128位&#xff08;16字节&#xff09;的哈希值&#xff0c;通常以32个十六进制数字表示。MD5广泛用于计算文件或文本数据的校…

【SQL学习进阶】从入门到高级应用(九)

文章目录 子查询什么是子查询where后面使用子查询from后面使用子查询select后面使用子查询exists、not existsin和exists区别 union&union alllimit &#x1f308;你好呀&#xff01;我是 山顶风景独好 &#x1f495;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面…

计算机视觉与模式识别实验1-2 图像的形态学操作

文章目录 &#x1f9e1;&#x1f9e1;实验流程&#x1f9e1;&#x1f9e1;1.图像膨胀2.图像腐蚀3.膨胀与腐蚀的综合使用4.对下面二值图像的目标提取骨架&#xff0c;并分析骨架结构。 &#x1f9e1;&#x1f9e1;全部代码&#x1f9e1;&#x1f9e1; &#x1f9e1;&#x1f9e1…

Unity实现简单的第一人称控制

先看效果 实现方式 1.首先创建一个脚本 2.编辑脚本内容 付上脚本代码 private float RotationX 0;public float speed 2f;//移动速度// Use this for initializationvoid Start(){Cursor.lockState CursorLockMode.Locked;//锁定鼠标到中心点Cursor.visible false;//隐藏鼠…