C++11中的新特性(2)

C++11

  • 1 可变参数模板
  • 2 emplace_back函数
  • 3 lambda表达式
    • 3.1 捕捉列表的作用
    • 3.2 lambda表达式底层原理
  • 4 包装器
  • 5 bind函数的使用

1 可变参数模板

在C++11之前,模板利用class关键字定义了几个参数,那么我们在编译推演中,我们就必须传入对应的参数,如下图函数模板所示(类模板也是一样的,这里就以函数模版为例)
在这里插入图片描述
在这里插入图片描述
出现上述错误的原因就是,缺少了T3这个参数,隐式实例化模版推演不出来!我们可以采用显式实例化!
在这里插入图片描述
我们可以发现这样的模版就存在一定的局限性,难道不可以根据我所传的参数,自动的匹配出对应有几个模版参数吗?所以在C++11中,我们就引入了可变的模版参数包来解决这一难题!
在这里插入图片描述
那么我们是如何获取到参数包中传过来的参数的呢?我们就以递归函数方式展开函数包来理解!

//递归的终止条件
void test()
{
	cout << endl;
}
template<class T, class ...Args>
void test(T t, Args ...arg)
{
	cout << t << endl;
	test(arg...);
}
//声明Args这是一个模版参数包 可以传过来0到任意个模版参数
template<class ...Args>
//arg就是函数形参参数包
void test(Args ...arg)
{
	//开始递归
	test(arg...);
}
int main()
{
	test(1, 'a',"ggg");
	return 0;
}

也就是说通过递归函数,我们可以一个一个的获得函数包中的参数!其实函数参数包是我们在语法层上的理解,事实上,对于所要传过来的参数,编译器就会实例化好对应的模版!如下图所示,在编译器的眼里其实只存在对应的类型参数!
在这里插入图片描述
所以在C++11之后,STL中的容器利用可变参数包通常结合我们的万能引用,以及完美转发从而保持我们要传入的是左值还是右值,比如下面所要介绍的emplace_back函数就是这样做的!

2 emplace_back函数

有些人常常说emplace_back函数效率更高,那么到底更高在哪里呢?其实在引用右值引用之后,对于深拷贝的有移动构造的对象,emplace_back与push_back函数效率其实都是相差不大的!但是对于那些浅拷贝的对象来说,利用emplace_back插入只需要直接调用构造函数,而利用push_back需要调用构造+拷贝构造!所以综合以上所述,emplace_back效率更高,我们更推荐使用emplace_back进行插入!

3 lambda表达式

在某些场景下,我们需要对对象进行比较与排序,但是对于我们选择不同的方式去进行比较!就需要写多个仿函数,为了解决这个问题,就引入了lambda表达式来解决这一问题!

lambda表达式书写格式:[capture-list] (parameters) mutable -> return-type { statement }

[capture-list]指的是捕捉列表!
(parameters)是参数列表与普通函数的参数列表一样,如果不需要参数传递,那么可以省略!
mutable:lambda函数总是一个const函数,mutable可以取消其常量性。
->return-type指的就是一个返回值,没有返回值,可以不写,如果有明确的返回值,可以由编译器自行推导!
{statement}指的就是一个函数体,在该函数体内,除了可以使用其参数外,还可以使用所有捕获到的变量。
也就是说在C++11中最简单的lambda表达式就是[]{},但是该表达式不能处理任何事情!
以下面的代码为示例:

int main()
{
	int a = 6, b = 4;
	// 拷贝x到捕捉列表中,利用mutable取消拷贝后x的常性,可以改变x的拷贝值
	int x = 10;
	auto add_x = [x](int a)mutable{x *= 2;return a + x;};
	cout << add_x(10) << endl;
	return 0;
}

可以发现,lambda表达式实质上就是一个匿名函数!我们需要通过auto将其赋值给一个变量,然后才可以显式的进行调用!

3.1 捕捉列表的作用

捕捉列表描述了上下文中那些数据可以被lambda使用,以及使用的方式传值还是传引用。

1️⃣ [var]:表示值传递方式捕捉变量var
2️⃣[=]:表示值传递方式捕获所有父作用域中的变量(包括this)
3️⃣[&var]:表示引用传递捕捉变量var
4️⃣[&]:表示引用传递捕捉所有父作用域中的变量(包括this)
5️⃣[this]:表示值传递方式捕捉当前的this指针

需要注意的是:
1 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。比如:[=, &a, &b]:以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量
2 捕捉列表不允许变量重复传递,否则就会导致编译错误。比如:[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复
3 在块作用域以外的lambda函数捕捉列表必须为空,即全局lambda函数的捕捉列表必须为空。在块作用域中的lambda函数仅能捕捉父作用域中的局部变量,捕捉任何非此作用域或者非局部变量都会导致编译报错,一对{}就组成了块作用域!
4 lambda表达式之间不能相互赋值,即使看起来类型相同

3.2 lambda表达式底层原理

实际上,lambda底层所用到就是去调用operator()函数,也就是说是仿函数!以下面中的代码为例!

class Rate
{
public:
	Rate(double rate) : _rate(rate)
	{}
	double operator()(double money, int year)
	{
		return money * _rate * year;
	}
private:
	double _rate;
};
int main()
{
	// 仿函数对象
	double rate = 0.49;
	Rate r1(rate);
	r1(10000, 2);
	// lamber表达式
	auto r2 = [=](double monty, int year)->double {return monty * rate * year;};
	r2(10000, 2);
	return 0;
}

在这里插入图片描述
了解完底层是啥样的之后,我们再来解释以下为什么一样的lambda表达式不能相互赋值呢?原因就是他们其实不是同样的类型!

int main()
{
	int x = 10;
	int y = 20;
	auto add1 = [=] {return x + y; };
	auto add2 = [=] {return x + y; };
	cout << typeid(add1).name() << endl;
	cout << typeid(add2).name() << endl;
	return 0;
}

在这里插入图片描述

我们可以发现,类型都不是一样的了,所以表达式一样的lambda不能相互赋值的!关于lambda可以参考这篇文章中所讲述的lambda详解

4 包装器

也就是我们所说的function包装器,它有什么作用呢?我们先来看这样一句代码:

ret = func(x);

在结合我们所学过的仿函数,以及lambda表达式,你觉得func是函数指针,还是仿函数对象,还是lambda表达式!所以如果有下面这样类似的代码,就会导致模版的效率低下!

template<class F, class T>
T useF(F f, T x)
{
 static int count = 0;
 cout << "count:" << ++count << endl;
 cout << "count:" << &count << endl;
 return f(x);
}
double f(double i)
{
 return i / 2;
}
struct Functor
{
 double operator()(double d)
 {
 return d / 3;
 }
};
int main()
{
 // 函数名
 cout << useF(f, 11.11) << endl;
 // 函数对象
 cout << useF(Functor(), 11.11) << endl;
 // lamber表达式
 cout << useF([](double d)->double{ return d/4; }, 11.11) << endl;
 return 0;
}

这样子我们的useF模版就会实例化成3个,那么如何解决这样一个问题,就是利用一个包装器,将上述的三种类型都变成包装器的对象!生成一个模版就行了!改进如下:

std::function在头文件functional中
类模板原型如下 template function; // undefined
template <class Ret, class… Args> class
function<Ret(Args…)>;
模板参数说明:
Ret: 被调用函数的返回类型
Args…:被调用函数的形参

#include<functional>
template<class F, class T>
T useF(F f, T x)
{
	static int count = 0;
	cout << "count:" << ++count << endl;
	cout << "count:" << &count << endl;
	return f(x);
}
double f(double i)
{
	return i / 2;
}
struct Functor
{
	double operator()(double d)
	{
		return d / 3;
	}
};
int main()
{
	// 函数名
	std::function<double(double)> f1 = f;
	cout << useF(f1, 11.11) << endl;
	// 函数对象
	std::function<double(double)> f2 = Functor();
	cout << useF(f2, 11.11) << endl;
	// lamber表达式
	std::function<double(double)> f3 = [](double d)->double { return d / 4; };
	cout << useF(f3, 11.11) << endl;
	return 0;
}

所以此时模版就只会实例化成一份包装器的模版参数!

5 bind函数的使用

bind函数作用一般就是绑定函数,然后交换参数的顺序!使用方法如下所示:

#include <functional>
int Plus(int a, int b)
{
	return a + b;
}
class Sub
{
public:
	int sub(int a, int b)
	{
		return a - b;
	}
};
int main()
{
	//表示绑定函数plus 参数分别由调用 func1 的第一,二个参数指定
	std::function<int(int, int)> func1 = std::bind(Plus, placeholders::_1,
		placeholders::_2);
	//auto func1 = std::bind(Plus, placeholders::_1, placeholders::_2);
	// placeholders::_1就表示是函数中的第一个参数,依次类推
	//表示绑定函数 plus 的第一,二为: 1, 2
	cout << func1(1, 2) << endl;
	
	Sub s;
	// 绑定成员函数,需要取类中成员函数的地址
	std::function<int(int, int)> func3 = std::bind(&Sub::sub, s,
		placeholders::_1, placeholders::_2);
	// 参数调换顺序
	std::function<int(int, int)> func4 = std::bind(&Sub::sub, s,
		placeholders::_2, placeholders::_1);
	cout << func3(1, 2) << endl;
	cout << func4(1, 2) << endl;
	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/665535.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Mac安装第三方软件的命令安装方式

场景&#xff1a; 打开终端命令行&#xff0c;sudo xattr -rd com.apple.quarantine&#xff0c;注意最后quarantine 后面加一个空格&#xff01;然后打开Finder&#xff08;访达&#xff09;&#xff0c;点击左侧的 应用程序&#xff0c;找到相关应用&#xff0c;拖进终端qua…

指纹浏览器大全

具体请前往&#xff1a;国内外指纹浏览器大全

vue3组件通信与props

title: vue3组件通信与props date: 2024/5/31 下午9:00:57 updated: 2024/5/31 下午9:00:57 categories: 前端开发 tags: Vue3组件Props详解生命周期数据通信模板语法Composition API单向数据流 Vue 3 组件基础 在 Vue 3 中&#xff0c;组件是构建用户界面的基本单位&#…

V90 PN总线伺服通过FB285速度控制实现正弦位置轨迹运动(解析法和数值法对比测试)

V90总线伺服相关内容请参考专栏系列文章,这里不在详述 1、V90伺服PN总线速度随动控制 V90伺服PN总线速度随动控制(手摇轮功能)_手摇轮可以接总线plc吗?-CSDN博客文章浏览阅读632次。V90PN总线控制相关内容,请参考下面文章链接:博途1200/1500PLC V90 PN通信控制 (FB284功能…

构建企业级AI私有知识库

一、引言 在当今竞争激烈的市场环境中&#xff0c;企业为了保持竞争优势&#xff0c;需要高效地管理和利用内部知识资源。构建一个企业级AI私有知识库&#xff0c;不仅可以集中存储和管理企业知识&#xff0c;还能通过人工智能技术实现知识的智能化处理和利用。本文将详细介绍…

模型 STORY评估框架

说明&#xff1a;系列文章 分享 模型&#xff0c;了解更多&#x1f449; 模型_思维模型目录。故事五要素&#xff1a;结构、时间、观点、现实、收益 。 1 STORY评估框架的应用 1.1 STORY模型展示其个性化在线学习解决方案的优势 一家在线教育平台想要通过一个故事来展示其个性…

Spring 框架:Java 企业级开发的基石

文章目录 序言Spring 框架的核心概念Spring 框架的主要模块Spring Boot&#xff1a;简化 Spring 开发Spring Cloud&#xff1a;构建微服务架构实际案例分析结论 序言 Spring 框架自 2002 年发布以来&#xff0c;已经成为 Java 企业级开发的标准之一。它通过提供全面的基础设施…

Qt 窗口

在Qt Creator 中创建项目的时候&#xff0c;我们能够选择创建QMainWindow 还是 QWidget 两种窗口。 二者有什么区别呢&#xff1f;其中 QMainWindow 是一种主窗口&#xff0c;包含菜单栏&#xff0c;工具栏&#xff0c;状态栏&#xff0c;中心窗口和浮动窗口等多个窗口组合&…

vs2022 MSVC2017_64 调试Qt5.14.2源码

pdb调试文件下载路径https://download.qt.io/online/qtsdkrepository/windows_x86/desktop/qt5_5142/qt.qt5.5142.debug_info.win64_msvc2017_64/ 在vs中添加pdb文件符号路径&#xff0c;使其qt在调试时能查找到相应的符号文件。 在需要调试的解决方案下通过解决方案点击&…

引领采购数字化变革,商越科技如何帮企业穿越周期?

导读 在企业“降本增效”的路上&#xff0c;采购数字化已经站上C位。采购数字化对企业究竟带来哪些价值&#xff1f; 在中国采购数字化赛道&#xff0c;行业领军者已经出现。 正文 面对经济环境的不确定性&#xff0c;企业都在寻找能够穿越周期的确定性。 “在经济不确定的大…

【运维项目经历|023】Docker自动化部署与监控项目

目录 项目名称 项目背景 项目目标 项目成果 我的角色与职责 我主要完成的工作内容 本次项目涉及的技术 本次项目遇到的问题与解决方法 本次项目中可能被面试官问到的问题 问题1&#xff1a;项目周期是多久&#xff1f; 问题2&#xff1a;服务器部署架构方式及数量配置…

golang语言的gofly快速开发框架如何设置多样的主题说明

本节教大家如何用gofly快速开发框架后台内置设置参数&#xff0c;配置出合适项目的布局及样式、主题色&#xff0c;让你您的项目在交互上加分&#xff0c;也是能帮你在交付项目时更容易得到客户认可&#xff0c;你的软件使用客户他们一般都是不都技术的&#xff0c;所以当他们拿…

JAVAEE之文件IO_数据流概念,字节流:InputStream、OutputStream,字符流:reader、writer,及实例代码

什么是数据流 顾名思义&#xff0c;I 表示input&#xff0c;O 表示output&#xff0c;也就是输入输出流&#xff0c;主要是在程序与文件之间&#xff0c;用于传输数据的通道。既然要传输数据&#xff0c;那么我们需要理解文件和程序之间哪种方向的传输是输入流&#xff0c;哪种…

ros2 launch gazebo_ros gazebo.launch.py无法启动

现象&#xff1a; 我的系统是ubuntu22.04&#xff0c;ros2的版本是humble&#xff0c;当运行os2 launch gazebo_ros gazebo.launch.py命令&#xff0c;会卡死在第六行&#xff0c;gazebo也不会打开但最后单独使用gazebo则可以打开 原因&#xff1a; 没有设置环境变量 解决办法 …

开源硬件初识——Orange Pi AIpro(8T)

开源硬件初识——Orange Pi AIpro&#xff08;8T&#xff09; 大抵是因为缘&#xff0c;妙不可言地就有了这么一块儿新一代AI开发板&#xff0c;乐于接触新鲜玩意儿的小火苗噌一下就燃了起来。 还没等拿到硬件&#xff0c;就已经开始在Orange Pi AIpro 官网上查阅起资料&…

Aws CodeCommit代码仓储库

1 创建IAM用户 IAM创建admin用户&#xff0c;增加AWSCodeCommitFullAccess权限 2 创建存储库 CodePipeline -> CodeCommit -> 存储库 创建存储库 3 SSH 1) window环境 3.1.1 上载SSH公有秘钥 生成SSH秘钥ID 3.1.2 编辑本地 ~/.ssh 目录中名为“config”的 SSH 配置文…

ARM32开发——第一盏灯

&#x1f3ac; 秋野酱&#xff1a;《个人主页》 &#x1f525; 个人专栏:《Java专栏》《Python专栏》 ⛺️心若有所向往,何惧道阻且长 文章目录 开发流程需求分析项目新建代码编写GPIO初始化 程序编译程序烧录烧录扩展&#xff08;熟悉&#xff09;官方烧录器烧录&#xff08;…

Java过滤特殊空格nbsp;

现象&#xff1a; 用Java处理excel文件中的以下字符串时&#xff0c;想去除此空格&#xff0c;却发现用String.trim()没有直到预期效果&#xff1a; 原因&#xff1a; 在网上找了下&#xff0c;应该是这其实是html中经常使用的一种特殊空格字符&nbsp&#xff1b; 处理&a…

LabVIEW调用外部DLL(动态链接库)

LabVIEW调用外部DLL&#xff08;动态链接库&#xff09; LabVIEW调用外部DLL&#xff08;动态链接库&#xff09;可以扩展其功能&#xff0c;使用外部库实现复杂计算、硬件控制等任务。通过调用节点&#xff08;Call Library Function Node&#xff09;配置DLL路径、函数名称和…