京东二面:为什么Netty要造FastThreadLocal?

FastThreadLocal 从字面意义上来看,它是“Fast”+“ThreadLocal”的结合体,寓意为快速的 ThreadLocal。那么,问题来了,Netty 为什么要再造一个 FastThreadLocal?FastThreadLocal 运行快的原因是啥?除了快之外,它还有其他优势吗?

1.先从ThreadLocal说起

ThreadLocal 线程本地变量,每个线程都拥有一份该变量的独立副本,即使是在多线程环境下,每个线程也只能修改和访问自己的那份副本,从而避免了线程安全问题,实现了线程间的隔离。

ThreadLocal 底层是使用 ThreadLocalMap 实现的,这点从 JDK 的源码中可以看出,核心源码如下:

private void set(Thread t, T value) {
    ThreadLocalMap map = getMap(t);
    if (map != null) {
        map.set(this, value);
    } else {
        createMap(t, value);
    }
}

从 ThreadLocal 的 set 方法可以看出,ThreadLocal 是存储在 ThreadLocalMap 中的,咱们继续看 ThreadLocalMap 的源码实现:

图片

从上面源码可以看出,ThreadLocalMap 中存放的是 Entry(哈希桶),而 Entry 中的 key 就是 ThreadLocal,而 value 则是要存储的值,所以我们得出 ThreadLocal 的底层实现如下:

图片

2.ThreadLocal存在的问题

2.1 性能问题

因为 ThreadLocal 底层是使用 ThreadLocalMap 实现的,ThreadLocalMap 类似于哈希表。当一个线程是拥有多个 ThreadLocal 时,ThreadLocalMap 很容易发生 Hash 冲突,此时 ThreadLocal 就不得不使用线性探测法来解决哈希冲突了,而在解决 Hash 冲突时需要不停地向下寻找,效率较低,因此 ThreadLocal 存在的第一个问题就是性能较低。

2.2 内存泄漏问题

ThreadLocal 也存在内存泄漏的问题,具体来说 ThreadLocalMap 使用 ThreadLocal 对象作为键(Key),并且这个键是弱引用(WeakReference)类型。这意味着当没有其他强引用指向 ThreadLocal 对象时,它将会在下次垃圾回收时被回收。然而,Entry 中保存的值(Value)仍然是强引用,这就可能导致以下问题:

  1. 弱引用键的回收:一旦外部对 ThreadLocal 实例的所有强引用消失,ThreadLocal 对象本身就会变为弱可达状态。在下一次垃圾回收时,由于是弱引用,ThreadLocal 对象会被回收,但 Entry 中的 Value(即实际存储的数据)仍然是强引用,因此不会被回收。

  2. Map 引用陷阱:即使 ThreadLocal 键被回收,Entry 仍然存在于 ThreadLocalMap 中,并且由于 Map 对 Entry 的引用,这些 Entry 所持有的 Value 对象也不会被垃圾回收,从而导致这些对象无法被使用也无法被释放,形成了所谓的“内存泄漏”。

  3. 线程长期存活:在一些场景下,特别是使用线程池时,线程的生命周期往往很长,甚至伴随整个应用的生命周期。这意味着 ThreadLocalMap 中的 Entry 可能会长时间不被清理,进一步加剧了内存泄漏问题。

所以,综合来看,在使用 ThreadLocal 时,如果在使用完之后,未及时调用 remove() 方法的话,就会出现内存泄漏的问题。

3.FastThreadLocal特点

为了解决 ThreadLocal 存在的这些问题,所以 Netty 创造出了一个 FastThreadLocal,FastThreadLocal 的特点如下。

3.1 效率高

FastThreadLocal 之所以性能高的原因是因为其存储结构,在 FastThreadLocal 中并没有向 ThreadLocal 那样,使用哈希表来存储元素,而是使用了数组来进行元素存储,它的核心实现源码如下:

public class FastThreadLocal<V> {
    // FastThreadLocal中的index是记录了该它维护的数据应该存储的位置
    // InternalThreadLocalMap数组中的下标, 它是在构造函数中确定的
    private final int index;
 
    public InternalThreadLocal() {
        index = InternalThreadLocalMap.nextVariableIndex();
    }
    // 省略其他代码
}

FastThreadLocal 核心类 InternalThreadLocalMap 的实现源码如下:

public final class InternalThreadLocalMap extends UnpaddedInternalThreadLocalMap {
    // 自增索引, ⽤于计算下次存储到Object数组中的位置
    private static final AtomicInteger nextIndex = new AtomicInteger();
 
    private static final int ARRAY_LIST_CAPACITY_MAX_SIZE = Integer.MAX_VALUE - 8;
 
    public static int nextVariableIndex() {
        int index = nextIndex.getAndIncrement();
        if (index >= ARRAY_LIST_CAPACITY_MAX_SIZE || index < 0) {
            nextIndex.set(ARRAY_LIST_CAPACITY_MAX_SIZE);
            throw new IllegalStateException("too many thread-local indexed variables");
        }
        return index;
    }
    // 省略其他代码
}

从上述源码可以看出,FastThreadLocal 在初始化的时候分配一个数组索引 index,index 的值采用原子类 AtomicInteger 保证顺序递增,通过调用 InternalThreadLocalMap.nextVariableIndex() 方法获得。然后在读写数据的时候通过数组下标 index 直接定位到 FastThreadLocal 的位置,时间复杂度为 O(1)。如果数组下标递增到非常大,那么数组也会比较大,所以 FastThreadLocal 是通过空间换时间的思想提升读写性能。

因此,在 FastThreadLocal 中并不需要使用线性探测法来解决 Hash 冲突,因为它是使用数组进行存储的,每次使用下标进行查询即可,它的查询时间复杂度也是 O(1) 的,所以它的操作效率很高。

3.2 安全性更高

JDK 原生的 ThreadLocal 使用不当可能造成内存泄漏,只能等待线程销毁。然而 FastThreadLocal 却不存在这个问题,在 FastThreadLocal 中不仅提供了 remove() 方法可以主动清除对象,而且它还封装了 FastThreadLocalRunnable,FastThreadLocalRunnable 在最后使用完之后会自动调用 removeAll() 方法将集合中所有对象清理掉,因此 FastThreadLocal 更安全。

FastThreadLocalRunnable 自动清除对象的实现核心源码如下:

final class FastThreadLocalRunnable implements Runnable {
    private final Runnable runnable;
    @Override
    public void run() {
        try {
            runnable.run();
        } finally {
            FastThreadLocal.removeAll();
        }
    }
    static Runnable wrap(Runnable runnable) {
        return runnable instanceof FastThreadLocalRunnable 
                ? runnable : new FastThreadLocalRunnable(runnable);
    }
}

4.小结

FastThreadLocal 相比于 ThreadLocal 存在以下两个主要优点:

  1. 性能更高:FastThreadLocal 使用了数组的方式来存储元素,所以它的查询时间复杂度 O(1) 相比于 ThreadLocal 的哈希表操作效率更高。

  2. 安全性更高:FastThreadLocal 中的 FastThreadLocalRunnable 在最后执行完之后会自动调用 removeAll() 将集合中所有对象都清理掉,可以避免内存泄漏的问题,所以它的安全性更高。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/662149.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

colmap在windows上编译好的程序直接可以运行支持cuda

1.colamp简介 COLMAP 是一种通用的运动结构 (SfM) 和多视图立体 (MVS) 管道&#xff0c;具有图形和命令行界面。它为有序和无序图像集合的重建提供了广泛的功能。 2.数据采集 手机或者相机 绕 物体拍一周&#xff0c;每张的角度不要超过30&#xff08;保证有overlap区域&#…

整合SSM框架笔记

整合SSM框架笔记 Spring5 Spring MVC MyBatis Druid MySQL Thymeleaf 感谢尚硅谷课程&#xff1a;B站课程 前言 单Spring框架时&#xff0c;是Java工程。 Spring与Spring MVC可以共用一个配置文件&#xff0c;也可以不共用一个&#xff0c;推荐不共用一个。 Spring与Sp…

Scala编程基础3 数组、映射、元组、集合

Scala编程基础3 数组、映射、元组、集合 小白的Scala学习笔记 2024/5/23 14:20 文章目录 Scala编程基础3 数组、映射、元组、集合apply方法数组yield 数组的一些方法映射元组数据类型转换求和示例拉链集合flatMap方法 SetHashMap apply方法 可以new&#xff0c;也可以不new&am…

《STM32Cube高效开发教程基础篇》- 安装软件/Demo3_1LED

文章目录 下载两个软件安装问题记录在STM32CubeMX中新建项目编辑代码在CudeMX中完成图形化设置在CudeIdea中编码在CLion中编码&#xff08;智能化&#xff09; 效果图 下载两个软件 百度网盘链接&#xff1a;https://pan.baidu.com/s/1uXLWIIVCJbF4ZdvZ7k11Pw 提取码&#xff1…

Vue3使用Composition API实现响应式

title: Vue3使用Composition API实现响应式 date: 2024/5/29 下午8:10:24 updated: 2024/5/29 下午8:10:24 categories: 前端开发 tags: Vue3CompositionRefsReactiveWatchLifecycleDebugging 1. 介绍 Composition API是Vue.js 3中新增的一组API&#xff0c;用于在组件中组…

DNF手游攻略:开荒必备攻略!

DNF手游马上就要开服了&#xff0c;今天给大家带来最完整的DNF手游入门教程。这篇攻略主要讲述了 DNF手游开服第一天要注意的事项&#xff0c;这是一个新手必备的技能书&#xff0c;可以让你在开服的时候&#xff0c;少走一些弯路&#xff0c;让你更快完成任务&#xff01;废话…

深度学习创新点不大但有效果,可以发论文吗?

深度学习中创新点比较小&#xff0c;但有效果&#xff0c;可以发论文吗&#xff1f;当然可以发&#xff0c;但如果想让编辑和审稿人眼前一亮&#xff0c;投中更高区位的论文&#xff0c;写作永远都是重要的。 那么怎样“讲故事”才能让论文更有吸引力&#xff1f;我总结了三点…

富途面试题:用面向对象的思想设计人关门的场景

我工作两年后&#xff0c;有一次不成功的富途证券的面试&#xff0c;印象非常深刻&#xff0c;面试官提出了一个看似简单实则充满深意的问题&#xff1a;如何用面向对象的思想设计一个人关门的场景&#xff1f; 我当时是这样设计的&#xff0c;创建两个类&#xff1a;Person和D…

多语言印度红绿灯系统源码带三级分销代理功能

前端为2套UI&#xff0c;一套是html写的&#xff0c;一套是编译后的前端 后台功能很完善&#xff0c;带预设、首充返佣、三级分销机制、代理功能。 东西很简单&#xff0c;首页就是红绿灯的下注页面&#xff0c;玩法虽然单一&#xff0c;好在不残缺可以正常跑。

短视频脚本创作的五个方法 沈阳短视频剪辑培训

说起脚本&#xff0c;我们大概都听过影视剧脚本、剧本&#xff0c;偶尔可能在某些综艺节目里听过台本。其中剧本是影视剧拍摄的大纲&#xff0c;用来指导影视剧剧情的走向和发展&#xff0c;而台本则是综艺节目流程走向的指导大纲。 那么&#xff0c;短视频脚本是什么&#xf…

XV7011BB可为智能割草机的导航系统提供新的解决方案

智能割草机作为现代家庭和商业草坪维护保养的重要工具&#xff0c;其精确的定位和导航系统对于提高机器工作效率和确保安全运行至关重要。在智能割草机的发展历程中&#xff0c;定位和导航技术一直是关键的创新点。 传统的基于RTK(实时动态差分定位技术)技术的割草机虽然在…

mysql连接不上可能的原因:防火墙放行mysql的3306端口 全库复制:data目录替换即可 mysql查看版本

1.看本地localhost能否连接 2.在本地看IP能否连接 能说明本地正常 权限也够 都能的话&#xff0c;ip能否ping通 能就说明可能是防火墙原因了。关闭防火墙及杀毒试试。 我这里关防火墙就能访问了。 windows如何开启防火墙&#xff0c;又放行mysql的3306端口&#xff1f; 在 …

可视化大屏也在卷组件化设计了?分享一些可视化组件

hello&#xff0c;我是大千UI工场&#xff0c;这次分享一些可视化大屏的组件&#xff0c;供大家欣赏。&#xff08;本人没有源文件提供&#xff09;

微前端(无界)入门

主应用通过props给子应用传值 父子应用通过eventBus通信 通过路由同步实现记录子应用的路由状态 主应用 main.ts: import ./assets/main.cssimport { createApp } from vue import { createPinia } from pinia import WujieVue from wujie-vue3import App from ./App.vue impo…

STM32 OTA需要注意问题

一、OTA设计思路&#xff08;问题&#xff09; 1、根据stm32f405 flash分布&#xff0c;最初将flash划分为四个区域&#xff0c;分别是Bootloader、APP1、APP2、参数区&#xff0c;设备上电后&#xff0c;进入Bootloader程序&#xff0c;判断OTA参数&#xff0c;根据参数来确定…

长方形边框 上方中间有缺口 css

<div class"text_6">大234234师掌4234柜</div><div class"text-wrapper_1"><span class"paragraph_1">四川慧创云戈科技有限公司推出的“大师掌柜”&#xff0c;是一个以餐饮外卖为切入口&#xff0c;专注实体小店新零售…

实验七 RTP、DSPP协议的配置

一、实验目的 掌握 RIP 动态路由协议的配置、诊断方法。 二、实验步骤 1、 运行 Cisco Packet Tracer 软件&#xff0c;在逻辑工作区放入两台路由器、两台工作站 PC&#xff0c;分别点击各路由器&#xff0c;打开其配置窗口&#xff0c;关闭电源&#xff0c;分别加入一个 2 …

PowerPivot-跨表取值

在PowerPivot中&#xff0c;跨表取值通常涉及创建关系和使用DAX&#xff08;数据分析表达式&#xff09;函数。 以下是一些基本步骤和常用的DAX函数&#xff0c;帮助你在PowerPivot中实现跨表取值&#xff1a; 步骤1&#xff1a;创建关系 加载数据&#xff1a;确保你已将需要…

吃透一道题day2:Java算法中的“如何找到给定字符串中的不同字符“

写在开头&#xff1a;很久没有开启有关算法的内容了,在正式开启开启今天这段算法之旅之前,跟大家谈一谈上周五歌手也就是第二期我的一些直观感受:相比第一期(chante moore的if i aint got you和faouzia的crazy带给我的经验)没有任何特别的惊艳之处,很平淡甚至可以说是心如止水,…

E. Binary Deque[双指针好思维题]

Binary Deque 题面翻译 有多组数据。 每组数据给出 n n n 个数&#xff0c;每个数为 0 0 0 或 1 1 1 。你可以选择从两边删数&#xff0c;求至少删几个数才可以使剩下的数总和为 s s s 。 如果不能达到 s s s &#xff0c;则输出 − 1 -1 −1 。 题目描述 Slavic h…