【OrangePi AIpro】开箱初体验以及OAK深度相机测试

1. 简介

        Orangepi AIPRO 是一款采用昇腾AI技术路线,集成4核64位处理器+AI处理器的单板计算机,集成图形处理器,支持8TOPS AI算力,拥有8GB/16GB LPDDR4X,可以外接eMMC模块,支持双4K高清输出。 

        Orange Pi AIpro拥有丰富的扩展接口,包括两个HDMI输出、GPIO接口、支持SATA/NVMe SSD 2280的M.2插槽(PCIe 4Lane)、TF插槽、千兆网口、两个USB3.0、一个USB Type-C 3.0、一个Micro USB(串口打印调试功能)、两个MIPI摄像头、一个MIPI屏等,预留电池接口,

Orange Pi AIpro已支持Ubuntu、openEuler操作系统,可以满足大多数AI算法原型验证、推理应用开发的需求。

2. 主要特性

  1. 处理器昇腾AI处理器(Ascend310B4)64bit 四核处理器,主频可达 1.5GHz
  2. 内存8GB LPDDR4X 内存
  3. 显示:支持 HDMI 2.0 最大分辨率可达 4K
  4. 网络:支持千兆以太网接口,Wi-Fi 5,蓝牙 4.2
  5. 接口:USB 3.0,USB 2.0,SATA 2.0,PCIe 2.0,I2C,SPI,GPIO
  6. 扩展:支持扩展多种 USB 和 PCIe 设备

3.使用方法

准备工作

  1. 下载针对 Orangepi AIPRO 的操作系统镜像文件(Ubuntu、openEuler),并将其烧录到 SD 卡中。

Ubuntu镜像

openEuler

  1. 将 SD 卡插入 Orangepi AIPRO 的 SD 卡槽,并开启电源。
  2. 系统将自动完成启动。

3.1连接串口及网络

      根据Orangepi AIPRO 提供的接口,我们可以很轻易的完成串口终端的登录和网络的配置,主要有一下几种方法:

  1. 通过HDMI线缆将开发板的HDMI0接口连接到我们的屏幕上,在熟悉的图形界面上配置wifi密码和设置以太网固定IP;
  2. 将开发板的microUSB调试串口通过USB线缆连接到电脑,可以使用串口终端登录 Linux 系统;(波特率:115200 数据位:8 停止位:1 None Flow Ctrl);
  3. 如果没有屏幕,我们可以通过在串口终端中使用nmtui工具来完成网络配置;

   接下来主要通过第三种方式介绍一下WIFI和千兆网络配置:

  1.在串口终端输入下面的命令开始搜索WIFI,ctrl+c退出搜索

nmcli dev wifi

2.配置WIFI名称与密码 wifi_name 需要替换为自己的WIFI名称 wifi_passwd 替换为WIFI密码

sudo nmcli dev wifi connect wifi_name password wifi_passwd
   成功后联网后会显示Device 'wlan0' successfully activated,通过PING一下网站域名可简单验证WIFI网络连通性。

3.千兆网口的配置

  • 通过命令查看网络连接状态,Wired connection 1就是千兆有线网络
nmcli con show

  • 输入下列命令完成千兆有线网络配置(可根据自己需要设置IP和网关地址)
    sudo nmcli con mod "Wired connection 1" ipv4.addresses "192.168.1.110" ipv4.gateway "192.168.1.1"  ipv4.dns "8.8.8.8" ipv4.method "manual"
  •  配置完成后 需要reboot生效
  • 在千兆网络端口没有连接网线时,无法查看端口详细的配置,此时我们将开发板连接到电脑通过下面的命令就可以查看固定IP是否配置成功
    • ip addr show eth0

4. USB深度摄像头初步测试

       由于Orangepi AIPRO板卡上提供了两个USB3.0接口可以很方便的连接USB相机,外置的深度相机可以节约AI处理器算力,让芯片专注于控制场景中的决策工作,手头刚好有OPENCV AI KIT的深度相机可以在Orangepi AIPRO测试一下。

       得益于Ubuntu系统强大的兼容性,我们可以通过简单的指令完成环境搭建;

# 安装依赖项
sudo wget -qO- https://docs.luxonis.com/install_depthai.sh | bash
# 安装显控软件
python3 -m pip install depthai-viewer
# 运行DepthAI Viewer
python3 -m depthai_viewer
      打开 depthai_viewer软件后,就可以看到深度相机传回的原始深度图像。

5.AI应用样例体验

       在Orangepi AIPRO板卡系统中还内置了多个有趣的AI处理案例,大大降低了学习门槛。

       在人像分割场景中,Orangepi AIPRO可以通过训练好的模型轻松实现深度学习神经网络PortraitNet,(PortraitNet是实时人像分割模型,该模型可以在移动设备上有效且高效地运行,基于轻量级的 U 形架构,在训练阶段有两个辅助损失,而在测试阶段不需要额外的成本进行肖像推理。两个辅助损失是边界损失和一致性约束损失。前者提高了边界像素的精度,后者增强了复杂光照环境下的鲁棒性)。

      5.1. 打开内置Jupyter Notebook AI样例的操作很便捷,只需要下面两条命令;

cd samples/notebooks/
./start_notebook.sh

 5.2. 运行Jupyter Notebook AI样例

    5.3.  输出对比图像

输入图像背景图像输出图像

     内置的AI样例中有很清晰的注释,在调试过程中很容易理解 各个代码模块对应的功能,可以很方便的修改,做到有的放矢。 

class Seg(object):
    """人像分割模型推理"""
    def __init__(self, model_path, model_width, model_height):
        self._model_path = model_path
        self._model_width = model_width
        self._model_height = model_height
        self.device_id = 0
        self._dvpp = None
        self._model = None

    def init(self):
        """初始化相关资源"""
        # Initialize dvpp
        self._dvpp = AclLiteImageProc()

        # Load model
        self._model = AclLiteModel(self._model_path)

        return const.SUCCESS

    @utils.display_time
    def pre_process(self, image):
        """图片预处理"""
        image_dvpp = image.copy_to_dvpp()
        yuv_image = self._dvpp.jpegd(image_dvpp)
        resized_image = self._dvpp.resize(yuv_image,
                                          self._model_width, self._model_height)
        return resized_image     

    @utils.display_time
    def inference(self, input_data):
        """模型推理"""
        return self._model.execute(input_data)

    @utils.display_time
    def post_process(self, infer_output, image_name):
        """获取分割结果"""
        data = infer_output[0]
        vals = data.flatten()
        mask = np.clip((vals * 255), 0, 255)
        mask = mask.reshape(224, 224, 2)
        cv2.imwrite(os.path.join(MASK_DIR, image_name), mask[:, :, 0])
        return mask 

    
@utils.display_time
def background_replace(bg_path, ori_path, mask_path):
    """将人像分割结果与背景图片结合"""
    background = cv2.imread(bg_path)
    height, width = background.shape[:2]
    ori_img = cv2.imread(ori_path)
    mask = cv2.imread(mask_path, 0)
    mask = mask / 255
    mask_resize = cv2.resize(mask, (width, height))
    ori_img = cv2.resize(ori_img, (width, height))
    mask_bg = np.repeat(mask_resize[..., np.newaxis], 3, 2)
    result = np.uint8(background * mask_bg + ori_img * (1 - mask_bg))
    cv2.imwrite(os.path.join(OUTPUT_DIR, os.path.basename(mask_path)), result)

    
def main():
    """推理主函数"""
    os.makedirs(OUTPUT_DIR, exist_ok=True)
    os.makedirs(MASK_DIR, exist_ok=True)

    acl_resource = AclLiteResource()
    acl_resource.init()

    seg = Seg(MODEL_PATH, MODEL_WIDTH, MODEL_HEIGHT)
    ret = seg.init()
    utils.check_ret("seg.init ", ret)

    images_list = [os.path.join(IMAGE_DIR, img)
                   for img in os.listdir(IMAGE_DIR)
                   if os.path.splitext(img)[1] in const.IMG_EXT]

    for image_file in images_list:
        image_name = os.path.basename(image_file)
        if image_name != 'background.jpg':
            print('====' + image_name + '====')
            # read image
            image = AclLiteImage(image_file)
            # Preprocess the picture
            resized_image = seg.pre_process(image)
            # Inference
            result = seg.inference([resized_image, ])
            # Post-processing
            mask = seg.post_process(result, image_name)
            # Fusion of segmented portrait and background image
            background_replace(os.path.join(IMAGE_DIR, 'background.jpg'), \
                                        image_file, os.path.join(MASK_DIR, image_name))

6. 总结

  1. 开箱测试外设功能并完成了Orangepi AIPRO的网络配置,体验了流畅的桌面系统;
  2. 测试了 OPENCV AI KIT USB3.0相机在Orangepi AIPRO的使用;
  3. 体验了Orangepi AIPRO内置的丰富AI样例。

7. 使用体验

通过这次体验Orangepi AIPRO板卡,我了解到了华为昇腾在AI领域深耕多年的强大实力,AI的未来不仅是好用的,更是易用的。

Orangepi AIPRO搭载的昇腾AI处理器(Ascend310B4)配合华为完整的开发工具,让开发者可以高效的实现AI应用程序的开发。

Orangepi AIPRO丰富的IO接口特别灵活,极大的丰富了AI的应用场景,既能很好的完成图像处理,也能实现控制功能。

8. 注意事项

  1. 在使用 Orangepi AIPRO 时,需要确认供电输入符合要求,以确保系统的稳定性和安全性。
  2. 开发板终端账号及密码  账号:root  密码: Mind@123  ;  账号:HwHiAiUser  密码:Mind@123

9. 参考资料

  • Orangepi AIPRO 官方网站
  • Orangepi AIPRO Wiki
  • Orangepi AIPRO 硬件文档
  • OrangePI AIPRO 用户手册

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/661713.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

五个超级好用的Prompt网站,让你的GPT效率碾压旁人!

五个超级好用的Prompt网站,让你的GPT效率碾压旁人! 1. 150 Best ChatGPT Prompts for All Kinds of Workflow 该网站包含了150个能够显著提升工作流程效率的ChatGPT Prompt。从制作引人入胜的内容到简化项目,这些提示应该有助于将 ChatGPT …

爱设计AiPPT.cn赵充:营销工作的AI进化

爱设计&AiPPT.cn是一家 AIGC 数字科技企业,致力于打造「下一代个人与组织的 Ai 工作站」 。目前旗下产品包括AiPPT.cn、爱设计AIGC 内容中台、365 编辑器、爱设计在线设计工具、AiH5 等超过 10 余款应用 AI 能力的内容创作工具。日前,爱设计&AiP…

在Android中解析XML文件并在RecyclerView中显示

1. 引言 最近工作有解析外部xml文件在App中显示的需求&#xff0c;特来写篇文章记录一下&#xff0c;方便下次使用。 2. 准备工作 首先&#xff0c;在项目的AndroidManifest.xml文件中添加读取外部存储的权限声明。 <uses-permission android:name"android.permiss…

渗透测试一些知识点

1、如果提示缺少参数&#xff0c;如{msg&#xff1a;params error}&#xff0c;可尝使用字典模糊测试构造参数&#xff0c;进一步攻击。 2、程序溢出&#xff0c;int最大值为2147483647&#xff0c;可尝试使用该值进行整数溢出&#xff0c;观察现象。 3、403&#xff0c;404响…

CentOS7离线安装Nginx

目录 1. 安装gcc2. 安装g3. 安装openssl4. 安装pcre5. 安装zlib6. 安装Nginx7. 启动nginx8. 开放80端口9. 访问测试10. 设置开机自启 Nginx离线安装需要依赖gcc、g环境&#xff0c;安装前要先检查linux系统中是否自带gcc和g&#xff0c;如果没有就需要先进行安装。 然后再安装o…

webpack快速入门---webpack的安装和基本使用

webpack是什么 本质上&#xff0c;webpack 是一个用于现代 JavaScript 应用程序的 静态模块打包工具。当 webpack 处理应用程序时&#xff0c;它会在内部从一个或多个入口点构建一个 依赖图(dependency graph)&#xff0c;然后将你项目中所需的每一个模块组合成一个或多个 bund…

UVa11604 General Sultan

UVa11604 General Sultan 题目链接题意分析AC 代码 题目链接 UVA - 11604 General Sultan 题意 给出一些0和1组成的模式串&#xff0c;问是否存在一个串使得有多种方案将这个串分解成模式串。    给一个包含n&#xff08;n≤100&#xff09;个符号的二进制编码方式&#xff…

Shell脚本的分支语句,循环语句

分支语句 if 表达式 then 命令表 fi 如果表达式为真&#xff0c;则执行命令表中的命令&#xff0c;否则退出。执行fi后的语句。 给文件权限:chmod 0777 文件名 输出: ./文件名 grep 查找用户名&#xff0c;管道wc -l 统计字符 2.多路分支语句 记得给文件名权限喔&#x…

M功能-支付平台(六)

target&#xff1a;离开柬埔寨倒计时-217day 今天突然发现我在csdn居然把我ip属地搞出来了&#xff0c;之前都没注意到&#xff0c;哎 前言 M功能演示版本做到后期(也就是第二周的后面3天)真的很心酸&#xff0c;这边安排的4后端后面都放弃了&#xff0c;觉得做不出来&#…

【YashanDB知识库】ODBC驱动类问题定位方法

【标题】ODBC驱动类问题定位方法 【需求分类】故障分析 【关键字】ODBC 【需求描述】由于我们的ODBC接口目前尚不完善&#xff0c;经常会遇见ODBC接口能力不足导致应用功能无法运行的问题&#xff0c;需要定位手段确定底层是哪个接口报错 【需求原因分析】方便一线数据库管…

图像去雾并与其他非物理模型进行对比

matlab clear clc close all imgimread( scene1.jpg);subplot(221),imshow(uint8(img)), title(原始低照度图像”);img(::,1)255-img(::1); img(::,2)255-img(:2); img(:,:3)255-img(: 3); szsize(img); wsZ(2); hsz(1); %计算RGB取最小值后的图像darkl dark l zeros(h,w); for…

Nginx配置及优化

Nginx配置及优化 前言nginx.conf拆分理解上线 最近在配置Nginx的时候&#xff0c;偶尔一些细致的理论有些模糊&#xff0c;配置起来费了点功夫&#xff0c;今天来详细写一下我个人的理解&#xff0c;文章参考了一些官网和其他优秀博主的文章http://t.csdnimg.cn/GbID9。 前言 …

Java设计模式总结

《武林外传》老白曾经说过这样一句话。高手就是手里无刀&#xff0c;心中也无刀。 类似于设计模式&#xff0c;你不知不觉中已经融进你的代码中了&#xff0c;但你并不知已经运用了。下面我总结几个我觉得比较常用的设计模式。 1&#xff1a;设计模式分类 总体来说设计模式分为…

小程序内的分包与数据共享

一:数据共享 小程序内的数据共享和vue当中不一样,vue当中的vue实例可以使得所有的组件都能this.store 但是小程序它只有page对象,和组件实例对象.对于vue而言,vue实例可以使得添加的组件都有. 但是page对象页面对象,不能使得页面内部有.只能使得这个页面内能访问.vue实例,会…

桌面上怎么记工作任务更加合理?能设置桌面提醒的便签软件

在快节奏的现代工作中&#xff0c;电脑已成为我们处理工作的主要工具。每天&#xff0c;我们都要面对电脑屏幕&#xff0c;处理大量的工作任务。为了更好地管理这些琐碎却重要的工作&#xff0c;将工作任务直接记录在桌面上&#xff0c;随时查看和调整&#xff0c;无疑是一种高…

自定义注解+AOP切面实现日志记录

自定义注解&#xff1a; Target(ElementType.METHOD)// 作用在方法上 Retention(RetentionPolicy.RUNTIME) Documented Inherited // 子类可以继承此注解 public interface OperationLog { } aop切面&#xff1a; Slf4j Aspect Component public class OperationAspect {Au…

【Text2SQL 论文】评估 ChatGPT 的 zero-shot Text2SQL 能力

论文&#xff1a;A comprehensive evaluation of ChatGPT’s zero-shot Text-to-SQL capability ⭐⭐⭐⭐ arXiv:2303.13547 这篇论文呢综合评估了 ChatGPT 在 zero-shot Text2SQL 任务上的表现。 dataset 使用了 Spider、Spider-SYN、Spider-DK、Spider-Realistic、Spider-CG…

SQL刷题笔记day6-1

1从不订购的客户 分析&#xff1a;从不订购&#xff0c;就是购买订单没有记录&#xff0c;not in 我的代码&#xff1a; select c.name as Customers from Customers c where c.id not in (select o.customerId from Orders o) 2 部门工资最高的员工 分析&#xff1a;每个部…

SFOS2:组件介绍

一、前言 在sailfish os application的开发过程中&#xff0c;几乎是困难重重&#xff0c;因为我暂未找到具有完整性、指导性、易懂性的开发文档&#xff0c;特别是组件的使用&#xff0c;现决定将自己的探究结果记录下来。因此&#xff0c;这篇文章只会具有参考价值&#xff0…

[数据集][目标检测]道路井盖下水道井盖开关闭和检测数据集VOC+YOLO格式407张2类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;407 标注数量(xml文件个数)&#xff1a;407 标注数量(txt文件个数)&#xff1a;407 标注类别…